Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is the result of factoring the expression below by taking out its greatest common factor?

4x^(2)+16 x-4=?
Choose 1 answer:
(A) 
2x(2x^(2)+8x-2)
(B) 
4(x^(2)+4x-1)
(C) 
4x(x^(2)+4x-1)
(D) 
2(2x^(2)+8x-2)

Which expression is the result of factoring the expression below by taking out its greatest common factor?\newline4x2+16x4=?4x^{2}+16x-4=?\newlineChoose 11 answer:\newline(A) 2x(2x2+8x2)2x(2x^{2}+8x-2)\newline(B) 4(x2+4x1)4(x^{2}+4x-1)\newline(C) 4x(x2+4x1)4x(x^{2}+4x-1)\newline(D) 2(2x2+8x2)2(2x^{2}+8x-2)

Full solution

Q. Which expression is the result of factoring the expression below by taking out its greatest common factor?\newline4x2+16x4=?4x^{2}+16x-4=?\newlineChoose 11 answer:\newline(A) 2x(2x2+8x2)2x(2x^{2}+8x-2)\newline(B) 4(x2+4x1)4(x^{2}+4x-1)\newline(C) 4x(x2+4x1)4x(x^{2}+4x-1)\newline(D) 2(2x2+8x2)2(2x^{2}+8x-2)
  1. Identify GCF of terms: Identify the greatest common factor (GCF) of the terms in the expression 4x2+16x44x^2 + 16x - 4.\newlineThe GCF of 4x24x^2, 16x16x, and 4-4 is 44.
  2. Factor out GCF from each term: Factor out the GCF from each term in the expression. 4x2+16x4=4(x2+4x1)4x^2 + 16x - 4 = 4(x^2 + 4x - 1)
  3. Check factored expression: Check the factored expression to ensure that when the GCF is distributed back into the parentheses, the original expression is obtained.4(x2+4x1)=4x2+16x44(x^2 + 4x - 1) = 4x^2 + 16x - 4