Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the slope of a line that passes through the points 
(-1,(1)/(3)) and 
(0,-(1)/(3)) in the 
xy-plane?
Choose 1 answer:
(A) 
-(2)/(3)
(B) 
-(1)/(3)
(c) 0
(D) 
(2)/(3)

What is the slope of a line that passes through the points (1,13) \left(-1, \frac{1}{3}\right) and (0,13) \left(0,-\frac{1}{3}\right) in the xy x y -plane?\newlineChoose 11 answer:\newline(A) 23 -\frac{2}{3} \newline(B) 13 -\frac{1}{3} \newline(C) 00\newline(D) 23 \frac{2}{3}

Full solution

Q. What is the slope of a line that passes through the points (1,13) \left(-1, \frac{1}{3}\right) and (0,13) \left(0,-\frac{1}{3}\right) in the xy x y -plane?\newlineChoose 11 answer:\newline(A) 23 -\frac{2}{3} \newline(B) 13 -\frac{1}{3} \newline(C) 00\newline(D) 23 \frac{2}{3}
  1. Find slope formula: To find the slope of the line, we use the slope formula, which is (y2y1)/(x2x1)(y_2 - y_1) / (x_2 - x_1), where (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) are the coordinates of the two points the line passes through.
  2. Substitute given points: Substitute the given points into the slope formula. Let's take (1,13)(-1, \frac{1}{3}) as (x1,y1)(x_1, y_1) and (0,13)(0, -\frac{1}{3}) as (x2,y2)(x_2, y_2).\newlineSlope = y2y1x2x1=13130(1)\frac{y_2 - y_1}{x_2 - x_1} = \frac{-\frac{1}{3} - \frac{1}{3}}{0 - (-1)}
  3. Simplify numerator and denominator: Simplify the numerator and the denominator.\newlineSlope = (1313)/(0+1)=23/1\left(\frac{-1}{3} - \frac{1}{3}\right) / (0 + 1) = \frac{-2}{3} / 1
  4. Determine the slope: Since dividing by 11 does not change the value, the slope is 23-\frac{2}{3}.\newlineSlope = 23-\frac{2}{3}

More problems from Find a missing coordinate using slope