Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the product of 
(1-p) and 
((1)/(2)-p), all reduced by 
p ?
Choose 1 answer:
(A) 
(1)/(2)(1-5p+2p^(2))
(B) 
(1)/(2)(2-5p+2p^(2))
(c) 
(1)/(2)(1-3p+2p^(2))
(D) 
(1)/(2)(2-3p+2p^(2))

What is the product of (1p) (1-p) and (12p) \left(\frac{1}{2}-p\right) , all reduced by p p ?\newlineChoose 11 answer:\newline(A) 12(15p+2p2) \frac{1}{2}\left(1-5 p+2 p^{2}\right) \newline(B) 12(25p+2p2) \frac{1}{2}\left(2-5 p+2 p^{2}\right) \newline(C) 12(13p+2p2) \frac{1}{2}\left(1-3 p+2 p^{2}\right) \newline(D) 12(23p+2p2) \frac{1}{2}\left(2-3 p+2 p^{2}\right)

Full solution

Q. What is the product of (1p) (1-p) and (12p) \left(\frac{1}{2}-p\right) , all reduced by p p ?\newlineChoose 11 answer:\newline(A) 12(15p+2p2) \frac{1}{2}\left(1-5 p+2 p^{2}\right) \newline(B) 12(25p+2p2) \frac{1}{2}\left(2-5 p+2 p^{2}\right) \newline(C) 12(13p+2p2) \frac{1}{2}\left(1-3 p+2 p^{2}\right) \newline(D) 12(23p+2p2) \frac{1}{2}\left(2-3 p+2 p^{2}\right)
  1. Multiply Binomials: First, we need to multiply (1p)(1-p) by (12p)\left(\frac{1}{2}-p\right). This is a simple multiplication of two binomials.\newline(1p)×(12p)=(1)(12)(1)p(p)(12)+(p)(p)(1-p) \times \left(\frac{1}{2}-p\right) = (1)\left(\frac{1}{2}\right) - (1)p - (p)\left(\frac{1}{2}\right) + (p)(p)
  2. Simplify Expression: Now, we simplify the expression by combining like terms and performing the multiplication.\newline(\(1-p) \times \left(\frac{11}{22}-p\right) = \frac{11}{22} - p - \frac{p}{22} + p^22
  3. Combine Like Terms: Next, we combine the terms with pp.12pp2+p2=12(1+12)p+p2\frac{1}{2} - p - \frac{p}{2} + p^2 = \frac{1}{2} - (1+\frac{1}{2})p + p^2
  4. Reduce Expression by pp: Simplify the coefficients of pp.12(1+12)p+p2=1232p+p2\frac{1}{2} - \left(1+\frac{1}{2}\right)p + p^2 = \frac{1}{2} - \frac{3}{2}p + p^2
  5. Combine p Terms: Now, we need to reduce this expression by pp, which means we subtract pp from the entire expression.(1232p+p2)p=1232p+p2p\left(\frac{1}{2} - \frac{3}{2}p + p^2\right) - p = \frac{1}{2} - \frac{3}{2}p + p^2 - p
  6. Factor Out 11/22: Combine the pp terms.\newline1232p+p2p=1252p+p2\frac{1}{2} - \frac{3}{2}p + p^2 - p = \frac{1}{2} - \frac{5}{2}p + p^2
  7. Compare with Answer Choices: Finally, we need to express the answer in the form of one of the given choices. We can factor out a 12\frac{1}{2} to match the answer choices.\newline1252p+p2=(12)(15p+2p2)\frac{1}{2} - \frac{5}{2}p + p^2 = \left(\frac{1}{2}\right)(1 - 5p + 2p^2)
  8. Compare with Answer Choices: Finally, we need to express the answer in the form of one of the given choices. We can factor out a 12\frac{1}{2} to match the answer choices.\newline1252p+p2=(12)(15p+2p2)\frac{1}{2} - \frac{5}{2}p + p^2 = \left(\frac{1}{2}\right)(1 - 5p + 2p^2)Now, we compare our result with the given answer choices.\newlineOur result is (12)(15p+2p2)\left(\frac{1}{2}\right)(1 - 5p + 2p^2), which matches answer choice (A).

More problems from Domain and range