Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the period of the function

g(x)=-9cos(-(pi)/(2)x-6)+8?
Give an exact value.
units

What is the period of the function\newlineg(x)=9cos(π2x6)+8? g(x)=-9 \cos \left(-\frac{\pi}{2} x-6\right)+8 ? \newlineGive an exact value.\newlineunits

Full solution

Q. What is the period of the function\newlineg(x)=9cos(π2x6)+8? g(x)=-9 \cos \left(-\frac{\pi}{2} x-6\right)+8 ? \newlineGive an exact value.\newlineunits
  1. Identify b value: The period of a cosine function of the form cos(bx)\cos(bx) is 2πb\frac{2\pi}{|b|}. In the given function g(x)=9cos((π2)x6)+8g(x) = -9\cos\left(-\left(\frac{\pi}{2}\right)x - 6\right) + 8, we need to identify the value of bb to determine the period.
  2. Rewrite function: The function g(x)g(x) can be rewritten without the negative inside the cosine as g(x)=9cos(π2x+6)+8g(x) = -9\cos\left(\frac{\pi}{2}x + 6\right) + 8, because cos(θ)=cos(θ)\cos(-\theta) = \cos(\theta). This does not change the period of the function.
  3. Calculate period: Now, we can see that the coefficient bb in front of xx inside the cosine function is π/2\pi/2. Therefore, the period of g(x)g(x) is 2π2\pi divided by π/2|\pi/2|.
  4. Period calculation: Calculating the period, we have Period = 2ππ/2=2π(π/2)=(2π)(2π)=4\frac{2\pi}{|\pi/2|} = \frac{2\pi}{(\pi/2)} = (2\pi) \cdot (\frac{2}{\pi}) = 4.
  5. Final period: The period of the function g(x)=9cos(π2x+6)+8g(x) = -9\cos\left(\frac{\pi}{2}x + 6\right) + 8 is 44 units.

More problems from Domain and range of quadratic functions: equations