Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

V=(4)/(3)pir^(3)
The formula gives the volume 
V of a sphere with radius 
r. What is the volume, in cubic feet, of a sphere with a radius of 2 feet?
Choose 1 answer:
(A) 
4pi
(B) 
8pi
(C) 
(8)/(3)pi
(D) 
(32)/(3)pi

V=43πr3 V=\frac{4}{3} \pi r^{3} \newlineThe formula gives the volume V V of a sphere with radius r r . What is the volume, in cubic feet, of a sphere with a radius of 22 feet?\newlineChoose 11 answer:\newline(A) 4π 4 \pi \newline(B) 8π 8 \pi \newline(C) 83π \frac{8}{3} \pi \newline(D) 323π \frac{32}{3} \pi

Full solution

Q. V=43πr3 V=\frac{4}{3} \pi r^{3} \newlineThe formula gives the volume V V of a sphere with radius r r . What is the volume, in cubic feet, of a sphere with a radius of 22 feet?\newlineChoose 11 answer:\newline(A) 4π 4 \pi \newline(B) 8π 8 \pi \newline(C) 83π \frac{8}{3} \pi \newline(D) 323π \frac{32}{3} \pi
  1. Identify the formula: Identify the formula for the volume of a sphere.\newlineThe formula for the volume of a sphere is given by V=43πr3V = \frac{4}{3}\pi r^3, where VV is the volume and rr is the radius of the sphere.
  2. Substitute the given radius: Substitute the given radius into the formula.\newlineThe radius rr is given as 22 feet. We substitute r=2r = 2 into the formula to find the volume VV.\newlineV=43π(2)3V = \frac{4}{3}\pi(2)^3
  3. Calculate the volume: Calculate the volume using the substituted values.\newlineV=43π(23)V = \frac{4}{3}\pi(2^3)\newlineV=43π(8)V = \frac{4}{3}\pi(8)\newlineV=43×8×πV = \frac{4}{3} \times 8 \times \pi\newlineV=323πV = \frac{32}{3}\pi cubic feet

More problems from Interpret parts of quadratic expressions: word problems