Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

V=(1)/(3)ℓwh
The formula gives the volume 
V of a rectangular pyramid with base length 
ℓ, base width 
w, and height 
h. What is the volume, in cubic meters, of a rectangular pyramid with a base length of 5 meters, a base width of 4 meters, and a height of 3 meters?

V=13wh V=\frac{1}{3} \ell w h \newlineThe formula gives the volume V V of a rectangular pyramid with base length \ell , base width w w , and height h h . What is the volume, in cubic meters, of a rectangular pyramid with a base length of 55 meters, a base width of 44 meters, and a height of 33 meters?

Full solution

Q. V=13wh V=\frac{1}{3} \ell w h \newlineThe formula gives the volume V V of a rectangular pyramid with base length \ell , base width w w , and height h h . What is the volume, in cubic meters, of a rectangular pyramid with a base length of 55 meters, a base width of 44 meters, and a height of 33 meters?
  1. Identify Given Values: Identify the given values from the problem.\newlineBase length (\ell) = 55 meters\newlineBase width (ww) = 44 meters\newlineHeight (hh) = 33 meters\newlineWe will use these values in the formula for the volume of a rectangular pyramid.
  2. Write Formula: Write down the formula for the volume of a rectangular pyramid.\newlineThe formula is V=13whV = \frac{1}{3}\ell w h.
  3. Substitute Values: Substitute the given values into the formula. V=13×5×4×3V = \frac{1}{3} \times 5 \times 4 \times 3
  4. Calculate Volume: Calculate the volume. V=(13)×5×4×3=(13)×60=20V = (\frac{1}{3}) \times 5 \times 4 \times 3 = (\frac{1}{3}) \times 60 = 20 cubic meters

More problems from Interpret parts of quadratic expressions: word problems