Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The kinetic energy, measured in kilogram meters squared per second squared 
((kg*m^(2))/(s^(2))), of the International Space Station is approximately:

13,340,250,000,000(kg*m^(2))/(s^(2))
If 1 Joule 
(J) is equal to 
1(kg*m^(2))/(s^(2)) , and 1 terajoule (TJ) is equal to 
10^(12)J, what is the approximate kinetic energy of the Space Station in terajoules to the nearest hundredth?
Choose 1 answer:
(A) 
0.1334TJ
(B) 
1.334TJ
(c) 
13.34TJ
(D) 
13.34*10^(12)TJ

The kinetic energy, measured in kilogram meters squared per second squared (kgm2 s2) \left(\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2}}\right) , of the International Space Station is approximately:\newline13,340,250,000,000kgm2 s2 13,340,250,000,000 \frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2}} \newlineIf 11 Joule (J) (\mathrm{J}) is equal to 1kgm2 s2 1 \frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2}} , and 11 terajoule (TJ) (\mathrm{TJ}) is equal to 1012 J 10^{12} \mathrm{~J} , what is the approximate kinetic energy of the Space Station in terajoules to the nearest hundredth?\newlineChoose 11 answer:\newline(A) 0.1334 0.1334 TJ\mathrm{TJ} \newline(B) 1.334 1.334 TJ \mathrm{TJ} \newline(C) 13.34 13.34 TJ \mathrm{TJ} \newline(D) 13.341012 13.34 \cdot 10^{12} TJ \mathrm{TJ}

Full solution

Q. The kinetic energy, measured in kilogram meters squared per second squared (kgm2 s2) \left(\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2}}\right) , of the International Space Station is approximately:\newline13,340,250,000,000kgm2 s2 13,340,250,000,000 \frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2}} \newlineIf 11 Joule (J) (\mathrm{J}) is equal to 1kgm2 s2 1 \frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2}} , and 11 terajoule (TJ) (\mathrm{TJ}) is equal to 1012 J 10^{12} \mathrm{~J} , what is the approximate kinetic energy of the Space Station in terajoules to the nearest hundredth?\newlineChoose 11 answer:\newline(A) 0.1334 0.1334 TJ\mathrm{TJ} \newline(B) 1.334 1.334 TJ \mathrm{TJ} \newline(C) 13.34 13.34 TJ \mathrm{TJ} \newline(D) 13.341012 13.34 \cdot 10^{12} TJ \mathrm{TJ}
  1. Understand Joules and Terajoules: Understand the relationship between joules and terajoules.\newline11 terajoule (TJ) is equal to 101210^{12} joules (J).
  2. Convert Kinetic Energy: Convert the given kinetic energy from joules to terajoules.\newlineThe given kinetic energy is 13,340,250,000,000(kgm2)/(s2)13,340,250,000,000 \, (\text{kg} \cdot \text{m}^{2})/(\text{s}^{2}), which is equivalent to 13,340,250,000,000joules13,340,250,000,000 \, \text{joules}.\newlineTo convert to terajoules, divide by 101210^{12}.\newline13,340,250,000,000J1012J/TJ=13.34025TJ\frac{13,340,250,000,000 \, \text{J}}{10^{12} \, \text{J/TJ}} = 13.34025 \, \text{TJ}
  3. Round to Nearest Terajoule: Round the result to the nearest hundredth of a terajoule. 13.3402513.34025 TJ rounded to the nearest hundredth is 13.3413.34 TJ.

More problems from Interpret parts of quadratic expressions: word problems