Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The graph of 
y=|x| is scaled vertically by a factor of 
(7)/(2).
What is the equation of the new graph?
Choose 1 answer:
(A) 
y=-(2)/(7)|x|
(B) 
y=-(7)/(2)|x|
(c) 
y=(2)/(7)|x|
(D) 
y=(7)/(2)|x|

The graph of y=x y=|x| is scaled vertically by a factor of 72 \frac{7}{2} .\newlineWhat is the equation of the new graph?\newlineChoose 11 answer:\newline(A) y=27x y=-\frac{2}{7}|x| \newline(B) y=72x y=-\frac{7}{2}|x| \newline(C) y=27x y=\frac{2}{7}|x| \newline(D) y=72x y=\frac{7}{2}|x|

Full solution

Q. The graph of y=x y=|x| is scaled vertically by a factor of 72 \frac{7}{2} .\newlineWhat is the equation of the new graph?\newlineChoose 11 answer:\newline(A) y=27x y=-\frac{2}{7}|x| \newline(B) y=72x y=-\frac{7}{2}|x| \newline(C) y=27x y=\frac{2}{7}|x| \newline(D) y=72x y=\frac{7}{2}|x|
  1. Identify vertical scaling effect: : Identify the effect of vertical scaling on the function.\newlineWhen a function y=f(x)y = f(x) is scaled vertically by a factor of aa, the new function becomes y=af(x)y = a \cdot f(x). In this case, f(x)=xf(x) = |x| and the scaling factor is 72\frac{7}{2}.
  2. Apply vertical scaling factor: : Apply the vertical scaling factor to the original function.\newlineThe new function after scaling will be y=72xy = \frac{7}{2} \cdot |x|.
  3. Match new function to choices: : Match the new function to the given choices.\newlineThe new function y=72xy = \frac{7}{2} \cdot |x| corresponds to choice (D) y=72xy=\frac{7}{2}|x|.

More problems from Domain and range of absolute value functions: equations