Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The angle 
theta_(1) is located in Quadrant
IV, and 
cos(theta_(1))=(9)/(19).
What is the value of 
sin(theta_(1)) ?
Express your answer exactly.

sin(theta_(1))=

The angle θ1 \theta_{1} is located in Quadrant\newlineIV, and cos(θ1)=919 \cos \left(\theta_{1}\right)=\frac{9}{19} .\newlineWhat is the value of sin(θ1) \sin \left(\theta_{1}\right) ?\newlineExpress your answer exactly.\newlinesin(θ1)= \sin \left(\theta_{1}\right)=

Full solution

Q. The angle θ1 \theta_{1} is located in Quadrant\newlineIV, and cos(θ1)=919 \cos \left(\theta_{1}\right)=\frac{9}{19} .\newlineWhat is the value of sin(θ1) \sin \left(\theta_{1}\right) ?\newlineExpress your answer exactly.\newlinesin(θ1)= \sin \left(\theta_{1}\right)=
  1. Use Pythagorean Identity: Use the Pythagorean identity sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1 to find sin(θ1)\sin(\theta_{1}).\newlinecos(θ1)=919\cos(\theta_{1}) = \frac{9}{19}, so cos2(θ1)=(919)2\cos^2(\theta_{1}) = \left(\frac{9}{19}\right)^2.\newlineCalculate cos2(θ1)\cos^2(\theta_{1}).\newlinecos2(θ1)=(919)2=81361\cos^2(\theta_{1}) = \left(\frac{9}{19}\right)^2 = \frac{81}{361}.
  2. Calculate cos2(θ1)\cos^2(\theta_{1}): Substitute cos2(θ1)\cos^2(\theta_{1}) into the Pythagorean identity.\newlinesin2(θ1)+cos2(θ1)=1\sin^2(\theta_{1}) + \cos^2(\theta_{1}) = 1\newlinesin2(θ1)+81361=1\sin^2(\theta_{1}) + \frac{81}{361} = 1\newlinesin2(θ1)=181361\sin^2(\theta_{1}) = 1 - \frac{81}{361}\newlineCalculate sin2(θ1)\sin^2(\theta_{1}).\newlinesin2(θ1)=181361=36136181361=280361\sin^2(\theta_{1}) = 1 - \frac{81}{361} = \frac{361}{361} - \frac{81}{361} = \frac{280}{361}
  3. Substitute into Identity: Find the value of sin(θ1)\sin(\theta_{1}). Since θ1\theta_{1} is in Quadrant IV, sin(θ1)\sin(\theta_{1}) is negative. Take the square root of sin2(θ1)\sin^2(\theta_{1}). sin(θ1)=280361\sin(\theta_{1}) = -\sqrt{\frac{280}{361}} Simplify the square root. sin(θ1)=280361\sin(\theta_{1}) = -\frac{\sqrt{280}}{\sqrt{361}} sin(θ1)=47019\sin(\theta_{1}) = -\frac{\sqrt{4*70}}{19} sin(θ1)=27019\sin(\theta_{1}) = -\frac{2*\sqrt{70}}{19}

More problems from Find trigonometric ratios using multiple identities