Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The angle 
theta_(1) is located in Quadrant II, and 
sin(theta_(1))=(1)/(4).
What is the value of 
cos(theta_(1)) ? Express your answer exactly.

cos(theta_(1))=

The angle θ1 \theta_{1} is located in Quadrant II, and sin(θ1)=14 \sin \left(\theta_{1}\right)=\frac{1}{4} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ? Express your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=

Full solution

Q. The angle θ1 \theta_{1} is located in Quadrant II, and sin(θ1)=14 \sin \left(\theta_{1}\right)=\frac{1}{4} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ? Express your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=
  1. Use Pythagorean Identity: We know that sin(θ1)=14\sin(\theta_{1}) = \frac{1}{4}. Use the Pythagorean identity sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1 to find the value of cos(θ1)\cos(\theta_{1}). Substitute 14\frac{1}{4} for sin(θ1)\sin(\theta_{1}) in sin2(θ1)+cos2(θ1)=1\sin^2(\theta_{1}) + \cos^2(\theta_{1}) = 1. (14)2+cos2(θ1)=1(\frac{1}{4})^2 + \cos^2(\theta_{1}) = 1.
  2. Substitute and Simplify: Simplify (14)2+cos2(θ1)=1(\frac{1}{4})^2 + \cos^2(\theta_{1}) = 1 to find the value of cos2(θ1)\cos^2(\theta_{1}).116+cos2(θ1)=1\frac{1}{16} + \cos^2(\theta_{1}) = 1cos2(θ1)=1116\cos^2(\theta_{1}) = 1 - \frac{1}{16}cos2(θ1)=1516\cos^2(\theta_{1}) = \frac{15}{16}
  3. Find cos(θ1)\cos(\theta_{1}): Since cos2(θ1)=1516\cos^2(\theta_{1}) = \frac{15}{16}, we take the square root of both sides to find cos(θ1)\cos(\theta_{1}).\newlinecos(θ1)=±1516\cos(\theta_{1}) = \pm\sqrt{\frac{15}{16}}\newlinecos(θ1)=±154\cos(\theta_{1}) = \pm\frac{\sqrt{15}}{4}
  4. Determine Sign: Determine the sign of cos(θ1)\cos(\theta_{1}) based on the quadrant in which θ1\theta_{1} is located.\newlineSince θ1\theta_{1} is in Quadrant II, where cosine is negative, we choose the negative value for cos(θ1)\cos(\theta_{1}).\newlinecos(θ1)=(15)/4\cos(\theta_{1}) = -\left(\sqrt{15}\right)/4

More problems from Find trigonometric ratios using multiple identities