Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The angle 
theta_(1) is located in Quadrant II, and 
cos(theta_(1))=-(2)/(11).
What is the value of 
sin(theta_(1)) ? Express your answer exactly.

sin(theta_(1))=

The angle θ1 \theta_{1} is located in Quadrant II, and cos(θ1)=211 \cos \left(\theta_{1}\right)=-\frac{2}{11} .\newlineWhat is the value of sin(θ1) \sin \left(\theta_{1}\right) ? Express your answer exactly.\newlinesin(θ1)= \sin \left(\theta_{1}\right)=

Full solution

Q. The angle θ1 \theta_{1} is located in Quadrant II, and cos(θ1)=211 \cos \left(\theta_{1}\right)=-\frac{2}{11} .\newlineWhat is the value of sin(θ1) \sin \left(\theta_{1}\right) ? Express your answer exactly.\newlinesin(θ1)= \sin \left(\theta_{1}\right)=
  1. Use Pythagorean Identity: We know that cos(θ1)=211\cos(\theta_{1}) = -\frac{2}{11}. Use the Pythagorean identity sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1 to find sin(θ1)\sin(\theta_{1}).\newlineSubstitute 211-\frac{2}{11} for cos(θ1)\cos(\theta_{1}) in the identity.\newlinesin2(θ1)+(211)2=1\sin^2(\theta_{1}) + \left(-\frac{2}{11}\right)^2 = 1.
  2. Simplify to Find sin: Simplify the equation to find the value of sin2(θ1)\sin^2(\theta_{1}).sin2(θ1)+4121=1\sin^2(\theta_{1}) + \frac{4}{121} = 1.sin2(θ1)=14121\sin^2(\theta_{1}) = 1 - \frac{4}{121}.sin2(θ1)=1211214121\sin^2(\theta_{1}) = \frac{121}{121} - \frac{4}{121}.sin2(θ1)=117121\sin^2(\theta_{1}) = \frac{117}{121}.
  3. Find sin(θ):\sin(\theta): Find the square root of sin2(θ1)\sin^2(\theta_{1}) to get sin(θ1)\sin(\theta_{1}). Since θ1\theta_{1} is in Quadrant II, sin(θ1)\sin(\theta_{1}) is positive. sin(θ1)=117/121\sin(\theta_{1}) = \sqrt{117/121}. sin(θ1)=117/121\sin(\theta_{1}) = \sqrt{117}/\sqrt{121}. sin(θ1)=117/11\sin(\theta_{1}) = \sqrt{117}/11.
  4. Determine Simplified Form: Determine the simplified form of 117\sqrt{117}.117117 is 3×3×133 \times 3 \times 13, so 117\sqrt{117} simplifies to 3×133 \times \sqrt{13}. Therefore, sin(θ1)=3×1311\sin(\theta_{1}) = \frac{3 \times \sqrt{13}}{11}.

More problems from Find trigonometric ratios using multiple identities