Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The angle 
theta_(1) is located in Quadrant
I, and 
sin(theta_(1))=(11)/(61).
What is the value of 
cos(theta_(1)) ?
Express your answer exactly.

cos(theta_(1))=

The angle θ1 \theta_{1} is located in Quadrant\newlineI, and sin(θ1)=1161 \sin \left(\theta_{1}\right)=\frac{11}{61} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ?\newlineExpress your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=

Full solution

Q. The angle θ1 \theta_{1} is located in Quadrant\newlineI, and sin(θ1)=1161 \sin \left(\theta_{1}\right)=\frac{11}{61} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ?\newlineExpress your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=
  1. Use Pythagorean Identity: We know that sin(θ1)=1161\sin(\theta_{1}) = \frac{11}{61}. Use the Pythagorean identity sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1 to find the value of cos(θ1)\cos(\theta_{1}).\newlineSubstitute 1161\frac{11}{61} for sin(θ1)\sin(\theta_{1}) in sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1.\newline(1161)2+cos2(θ1)=1(\frac{11}{61})^2 + \cos^2(\theta_{1}) = 1.
  2. Substitute sin(θ)\sin(\theta): Simplify (1161)2+cos2(θ1)=1\left(\frac{11}{61}\right)^2 + \cos^2(\theta_{1}) = 1 to find the value of cos2(θ1)\cos^2(\theta_{1}).(1161)2=1213721\left(\frac{11}{61}\right)^2 = \frac{121}{3721}.cos2(θ1)=11213721\cos^2(\theta_{1}) = 1 - \frac{121}{3721}.
  3. Simplify to find cos(θ)\cos(\theta): Calculate cos2(θ1)=11213721\cos^2(\theta_{1}) = 1 - \frac{121}{3721}.
    cos2(θ1)=372137211213721\cos^2(\theta_{1}) = \frac{3721}{3721} - \frac{121}{3721}.
    cos2(θ1)=37211213721\cos^2(\theta_{1}) = \frac{3721 - 121}{3721}.
    cos2(θ1)=36003721\cos^2(\theta_{1}) = \frac{3600}{3721}.
  4. Calculate cos(θ)\cos(\theta): Since θ1\theta_{1} is in Quadrant I, where all trigonometric functions are positive, we take the positive square root of cos2(θ1)\cos^2(\theta_{1}).\newlinecos(θ1)=36003721\cos(\theta_{1}) = \sqrt{\frac{3600}{3721}}.\newlinecos(θ1)=6061\cos(\theta_{1}) = \frac{60}{61}.

More problems from Find trigonometric ratios using multiple identities