Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The angle 
theta_(1) is located in Quadrant
I, and 
cos(theta_(1))=(10)/(17).
What is the value of 
sin(theta_(1)) ?
Express your answer exactly.

sin(theta_(1))=

The angle θ1 \theta_{1} is located in Quadrant\newlineI, and cos(θ1)=1017 \cos \left(\theta_{1}\right)=\frac{10}{17} .\newlineWhat is the value of sin(θ1) \sin \left(\theta_{1}\right) ?\newlineExpress your answer exactly.\newlinesin(θ1)= \sin \left(\theta_{1}\right)=

Full solution

Q. The angle θ1 \theta_{1} is located in Quadrant\newlineI, and cos(θ1)=1017 \cos \left(\theta_{1}\right)=\frac{10}{17} .\newlineWhat is the value of sin(θ1) \sin \left(\theta_{1}\right) ?\newlineExpress your answer exactly.\newlinesin(θ1)= \sin \left(\theta_{1}\right)=
  1. Use Pythagorean Identity: We know that cos(θ1)=1017\cos(\theta_{1}) = \frac{10}{17}. To find sin(θ1)\sin(\theta_{1}), we use the Pythagorean identity sin2(θ1)+cos2(θ1)=1\sin^2(\theta_{1}) + \cos^2(\theta_{1}) = 1.\newlineSubstitute cos(θ1)=1017\cos(\theta_{1}) = \frac{10}{17} into the identity.\newlinesin2(θ1)+(1017)2=1\sin^2(\theta_{1}) + \left(\frac{10}{17}\right)^2 = 1.
  2. Simplify and Calculate sin(θ1)\sin(\theta_{1}): Simplify (1017)2(\frac{10}{17})^2 and subtract it from 11 to find sin2(θ1)\sin^2(\theta_{1}).
    sin2(θ1)+100289=1\sin^2(\theta_{1}) + \frac{100}{289} = 1.
    sin2(θ1)=1100289\sin^2(\theta_{1}) = 1 - \frac{100}{289}.
    sin2(θ1)=289289100289\sin^2(\theta_{1}) = \frac{289}{289} - \frac{100}{289}.
    sin2(θ1)=189289\sin^2(\theta_{1}) = \frac{189}{289}.
  3. Take Square Root: Take the square root of both sides to find sin(θ1)\sin(\theta_{1}).sin(θ1)=±189289\sin(\theta_{1}) = \pm\sqrt{\frac{189}{289}}.Since θ1\theta_{1} is in Quadrant I, where sine is positive, we choose the positive root.sin(θ1)=189289\sin(\theta_{1}) = \sqrt{\frac{189}{289}}.
  4. Final Simplification: Simplify the square root of the fraction.\newlinesin(θ1)=189289.\sin(\theta_{1}) = \frac{\sqrt{189}}{\sqrt{289}}.\newlinesin(θ1)=92117.\sin(\theta_{1}) = \frac{\sqrt{9\cdot21}}{17}.\newlinesin(θ1)=32117.\sin(\theta_{1}) = \frac{3\sqrt{21}}{17}.

More problems from Find trigonometric ratios using multiple identities