Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.

{:[-5x+4y=3],[x=2y-15],[x=◻],[y=◻]:}

Solve the system of equations.\newline5x+4y=3x=2y15x=y= \begin{array}{l} -5 x+4 y=3 \\ x=2 y-15 \\ x=\square \\ y=\square \end{array}

Full solution

Q. Solve the system of equations.\newline5x+4y=3x=2y15x=y= \begin{array}{l} -5 x+4 y=3 \\ x=2 y-15 \\ x=\square \\ y=\square \end{array}
  1. Solve for x: Solve the second equation for x.\newlineThe second equation is x=2y15x = 2y - 15. We can use this expression for xx to substitute into the first equation.
  2. Substitute xx into first equation: Substitute x=2y15x = 2y - 15 into the first equation.\newlineThe first equation is 5x+4y=3-5x + 4y = 3. Replace xx with 2y152y - 15 to get:\newline5(2y15)+4y=3-5(2y - 15) + 4y = 3
  3. Distribute and combine like terms: Distribute 5-5 and combine like terms.\newline10y+75+4y=3-10y + 75 + 4y = 3\newline6y+75=3-6y + 75 = 3
  4. Isolate the variable y: Isolate the variable y.\newlineSubtract 7575 from both sides of the equation to get:\newline6y=375-6y = 3 - 75\newline6y=72-6y = -72
  5. Solve for y: Solve for y.\newlineDivide both sides by 6-6 to find the value of y:\newliney=726y = \frac{-72}{-6}\newliney=12y = 12
  6. Substitute yy into second equation: Substitute y=12y = 12 into the second equation to find xx.\newlineThe second equation is x=2y15x = 2y - 15. Substitute yy with 1212:\newlinex=2(12)15x = 2(12) - 15\newlinex=2415x = 24 - 15\newlinex=9x = 9
  7. Check the solution: Check the solution in the first equation.\newlineSubstitute x=9x = 9 and y=12y = 12 into the first equation 5x+4y=3-5x + 4y = 3:\newline5(9)+4(12)=3-5(9) + 4(12) = 3\newline45+48=3-45 + 48 = 3\newline3=33 = 3\newlineThe left side equals the right side, so the solution checks out.

More problems from Solve a system of equations using substitution