Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.

{:[3x+4y=-23],[x=3y+1],[x=◻],[y=◻]:}

Solve the system of equations.\newline3x+4y=23x=3y+1x=y= \begin{array}{l} 3 x+4 y=-23 \\ x=3 y+1 \\ x=\square \\ y=\square \end{array}

Full solution

Q. Solve the system of equations.\newline3x+4y=23x=3y+1x=y= \begin{array}{l} 3 x+4 y=-23 \\ x=3 y+1 \\ x=\square \\ y=\square \end{array}
  1. Identify Equations: Identify the given system of equations.\newlineWe have the following system of equations:\newline3x+4y=233x + 4y = -23\newlinex=3y+1x = 3y + 1
  2. Substitute and Solve: Substitute the second equation into the first equation.\newlineSince x=3y+1x = 3y + 1, we can replace xx in the first equation with 3y+13y + 1 to solve for yy.\newline3(3y+1)+4y=233(3y + 1) + 4y = -23
  3. Combine Terms: Distribute and combine like terms.\newline9y+3+4y=239y + 3 + 4y = -23\newline13y+3=2313y + 3 = -23
  4. Isolate Variable: Isolate the variable yy.\newlineSubtract 33 from both sides of the equation to solve for yy.\newline13y=23313y = -23 - 3\newline13y=2613y = -26
  5. Find Value of y: Divide both sides by 1313 to find the value of yy.\newliney=2613y = \frac{-26}{13}\newliney=2y = -2
  6. Substitute for x: Substitute the value of yy back into the second equation to solve for xx.x=3(2)+1x = 3(-2) + 1
  7. Calculate x: Calculate the value of x.\newlinex=6+1x = -6 + 1\newlinex=5x = -5

More problems from Solve a system of equations using substitution