Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.

{:[2x-9y=14],[x=-6y+7],[x=◻],[y=◻]:}

Solve the system of equations.\newline2x9y=14x=6y+7x=y= \begin{array}{l} 2 x-9 y=14 \\ x=-6 y+7 \\ x=\square \\ y=\square \end{array}

Full solution

Q. Solve the system of equations.\newline2x9y=14x=6y+7x=y= \begin{array}{l} 2 x-9 y=14 \\ x=-6 y+7 \\ x=\square \\ y=\square \end{array}
  1. Solve second equation for x: Solve the second equation for x.\newlineThe second equation is x=6y+7x = -6y + 7. We can use this equation to substitute for xx in the first equation.
  2. Substitute xx into first equation: Substitute x=6y+7x = -6y + 7 into the first equation.\newlineThe first equation is 2x9y=142x - 9y = 14. Substituting xx gives us:\newline2(6y+7)9y=142(-6y + 7) - 9y = 14
  3. Distribute and combine like terms: Distribute and combine like terms.\newline2(6y)+2(7)9y=142(-6y) + 2(7) - 9y = 14\newline12y+149y=14-12y + 14 - 9y = 14\newline21y+14=14-21y + 14 = 14
  4. Isolate the variable y: Isolate the variable y.\newlineSubtract 1414 from both sides of the equation:\newline21y+1414=1414-21y + 14 - 14 = 14 - 14\newline21y=0-21y = 0
  5. Solve for y: Solve for y.\newlineDivide both sides by 21-21:\newliney=021y = \frac{0}{-21}\newliney=0y = 0
  6. Substitute yy into second equation: Substitute y=0y = 0 into the second equation to find xx.\newlineThe second equation is x=6y+7x = -6y + 7. Substituting y=0y = 0 gives us:\newlinex=6(0)+7x = -6(0) + 7\newlinex=0+7x = 0 + 7\newlinex=7x = 7
  7. Write the solution as an ordered pair: Write the solution as an ordered pair.\newlineThe solution to the system of equations is (x,y)=(7,0)(x, y) = (7, 0).

More problems from Solve a system of equations using substitution