Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.

{:[15 x+31 y=-3],[x=-y+3],[x=◻],[y=◻]:}

Solve the system of equations.\newline15x+31y=3x=y+3x=y= \begin{array}{l} 15 x+31 y=-3 \\ x=-y+3 \\ x=\square \\ y=\square \end{array}

Full solution

Q. Solve the system of equations.\newline15x+31y=3x=y+3x=y= \begin{array}{l} 15 x+31 y=-3 \\ x=-y+3 \\ x=\square \\ y=\square \end{array}
  1. Given System of Equations: We are given a system of equations:\newline{15x+31y=3x=y+3 \begin{cases} 15x + 31y = -3 \\ x = -y + 3 \end{cases} \newlineWe will use the second equation to express x in terms of y and then substitute it into the first equation.
  2. Express x in terms of y: From the second equation, we have:\newlinex=y+3 x = -y + 3 \newlineNow we will substitute this expression for x into the first equation.
  3. Substitute x into first equation: Substituting x=y+3 x = -y + 3 into the first equation, we get:\newline15(y+3)+31y=3 15(-y + 3) + 31y = -3 \newlineNow we will distribute the 1515 and simplify the equation.
  4. Distribute and simplify: Distributing the 1515, we get:\newline15y+45+31y=3 -15y + 45 + 31y = -3 \newlineNow we combine like terms.
  5. Combine like terms: Combining like terms, we get:\newline16y+45=3 16y + 45 = -3 \newlineNext, we will subtract 4545 from both sides to isolate the term with y.
  6. Isolate y term: Subtracting 4545 from both sides, we have:\newline16y=345 16y = -3 - 45 \newline16y=48 16y = -48 \newlineNow we will divide both sides by 1616 to solve for y.
  7. Solve for y: Dividing both sides by 1616, we get:\newliney=4816 y = \frac{-48}{16} \newliney=3 y = -3 \newlineWe have found the value of y. Now we will substitute this value back into the second equation to find x.
  8. Substitute y into second equation: Substituting y=3 y = -3 into the second equation x=y+3 x = -y + 3 , we get:\newlinex=(3)+3 x = -(-3) + 3 \newlinex=3+3 x = 3 + 3 \newlinex=6 x = 6 \newlineWe have found the value of x.

More problems from Solve a system of equations using substitution