Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.

{:[13 x-6y=22],[x=y+6],[x=◻],[y=◻]:}

Solve the system of equations.\newline13x6y=22x=y+6x=y= \begin{array}{l} 13 x-6 y=22 \\ x=y+6 \\ x=\square \\ y=\square \end{array}

Full solution

Q. Solve the system of equations.\newline13x6y=22x=y+6x=y= \begin{array}{l} 13 x-6 y=22 \\ x=y+6 \\ x=\square \\ y=\square \end{array}
  1. Identify Equations: Identify the given system of equations.\newlineWe have the following system of equations:\newline11) 13x6y=2213x - 6y = 22\newline22) x=y+6x = y + 6\newlineWe need to find the values of xx and yy that satisfy both equations.
  2. Substitute and Solve: Substitute the second equation into the first equation.\newlineSince x=y+6x = y + 6, we can replace xx in the first equation with y+6y + 6 to solve for yy.\newline13(y+6)6y=2213(y + 6) - 6y = 22
  3. Combine Terms: Distribute and combine like terms.\newline13y+786y=2213y + 78 - 6y = 22\newline(13y6y)+78=22(13y - 6y) + 78 = 22\newline7y+78=227y + 78 = 22
  4. Isolate Variable: Isolate the variable yy.\newlineSubtract 7878 from both sides of the equation to solve for yy.\newline7y=22787y = 22 - 78\newline7y=567y = -56
  5. Find Value of y: Divide both sides by 77 to find the value of yy.y=567y = \frac{-56}{7}y=8y = -8
  6. Substitute for x: Substitute the value of yy back into the second equation to solve for xx.x=y+6x = y + 6x=8+6x = -8 + 6x=2x = -2
  7. Check Solution: Check the solution by substituting xx and yy into both original equations.\newlineFirst equation: 13x6y=2213x - 6y = 22\newline13(2)6(8)=2213(-2) - 6(-8) = 22\newline26+48=22-26 + 48 = 22\newline22=2222 = 22 (True)\newlineSecond equation: x=y+6x = y + 6\newline2=8+6-2 = -8 + 6\newline2=2-2 = -2 (True)\newlineBoth equations are satisfied, so the solution is correct.

More problems from Solve a system of equations using substitution