Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
x.

5x-4 >= 12quad OR 
quad12 x+5 <= -4
Choose 1 answer:
(A) 
x >= (16)/(5) or 
x <= -(3)/(4)
(B) 
x <= (16)/(5)
(C) 
x >= -(3)/(4)
(D) There are no solutions
(E) All values of 
x are solutions

Solve for x x .\newline5x412 5 x-4 \geq 12 \quad OR 12x+54 \quad 12 x+5 \leq-4 \newlineChoose 11 answer:\newline(A) x165 x \geq \frac{16}{5} or x34 x \leq-\frac{3}{4} \newline(B) x165 x \leq \frac{16}{5} \newline(C) x34 x \geq-\frac{3}{4} \newline(D) There are no solutions\newline(E) All values of x x are solutions

Full solution

Q. Solve for x x .\newline5x412 5 x-4 \geq 12 \quad OR 12x+54 \quad 12 x+5 \leq-4 \newlineChoose 11 answer:\newline(A) x165 x \geq \frac{16}{5} or x34 x \leq-\frac{3}{4} \newline(B) x165 x \leq \frac{16}{5} \newline(C) x34 x \geq-\frac{3}{4} \newline(D) There are no solutions\newline(E) All values of x x are solutions
  1. Solve first inequality: Solve the first inequality 5x4125x - 4 \geq 12.\newlineAdd 44 to both sides to isolate the term with xx on one side.\newline5x4+412+45x - 4 + 4 \geq 12 + 4\newline5x165x \geq 16\newlineNow, divide both sides by 55 to solve for xx.\newlinex165x \geq \frac{16}{5}
  2. Solve second inequality: Solve the second inequality 12x+5412x + 5 \leq -4.
    Subtract 55 from both sides to isolate the term with xx on one side.
    12x+554512x + 5 - 5 \leq -4 - 5
    12x912x \leq -9
    Now, divide both sides by 1212 to solve for xx.
    x912x \leq -\frac{9}{12}
    Simplify the fraction 912-\frac{9}{12} to 34-\frac{3}{4}.
    5500
  3. Combine solutions: Combine the solutions from Step 11 and Step 22.\newlineThe solution to the system of inequalities is the union of the individual solutions.\newlinex165x \geq \frac{16}{5} or x34x \leq -\frac{3}{4}

More problems from Solve rational equations