Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
x.

2x+3 >= 7quad" OR "quad2x+9 > 11
Choose 1 answer:
(A) 
x > 1
(B) 
x >= 2
(C) 
x <= 2
(D) There are no solutions
(E) All values of 
x are solutions

Solve for x x .\newline 2 x+3 \geq 7 \quad \text { OR } \quad 2 x+9>11 \newlineChoose 11 answer:\newline(A) x>1 \newline(B) x2 x \geq 2 \newline(C) x2 x \leq 2 \newline(D) There are no solutions\newline(E) All values of x x are solutions

Full solution

Q. Solve for x x .\newline2x+37 OR 2x+9>11 2 x+3 \geq 7 \quad \text { OR } \quad 2 x+9>11 \newlineChoose 11 answer:\newline(A) x>1 x>1 \newline(B) x2 x \geq 2 \newline(C) x2 x \leq 2 \newline(D) There are no solutions\newline(E) All values of x x are solutions
  1. Solve first inequality: Solve the first inequality 2x+372x + 3 \geq 7.\newlineSubtract 33 from both sides to isolate the term with xx.\newline2x+33732x + 3 - 3 \geq 7 - 3\newline2x42x \geq 4\newlineNow, divide both sides by 22 to solve for xx.\newline2x242\frac{2x}{2} \geq \frac{4}{2}\newlinex2x \geq 2
  2. Solve second inequality: Solve the second inequality 2x + 9 > 11.
    Subtract 99 from both sides to isolate the term with xx.
    2x + 9 - 9 > 11 - 9
    2x > 2
    Now, divide both sides by 22 to solve for xx.
    \frac{2x}{2} > \frac{2}{2}
    x > 1
  3. Combine solutions: Combine the solutions from Step 11 and Step 22.\newlineThe first inequality gives us x2x \geq 2.\newlineThe second inequality gives us x > 1.\newlineSince x > 1 is less restrictive than x2x \geq 2, the solution that satisfies both inequalities is x2x \geq 2.

More problems from Is (x, y) a solution to the system of linear inequalities?