Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

-9x+10x^(2)+8=14
Choose 1 answer:
(A) 
x=(3)/(4),1
(B) 
x=(4+-sqrt26)/(10)
(c) 
x=(-1+-sqrt109)/(18)
(D) 
x=(9+-sqrt321)/(20)

Solve.\newline9x+10x2+8=14 -9 x+10 x^{2}+8=14 \newlineChoose 11 answer:\newline(A) x=34,1 x=\frac{3}{4}, 1 \newline(B) x=4±2610 x=\frac{4 \pm \sqrt{26}}{10} \newline(C) x=1±10918 x=\frac{-1 \pm \sqrt{109}}{18} \newline(D) x=9±32120 x=\frac{9 \pm \sqrt{321}}{20}

Full solution

Q. Solve.\newline9x+10x2+8=14 -9 x+10 x^{2}+8=14 \newlineChoose 11 answer:\newline(A) x=34,1 x=\frac{3}{4}, 1 \newline(B) x=4±2610 x=\frac{4 \pm \sqrt{26}}{10} \newline(C) x=1±10918 x=\frac{-1 \pm \sqrt{109}}{18} \newline(D) x=9±32120 x=\frac{9 \pm \sqrt{321}}{20}
  1. Rewriting the equation: First, we need to rewrite the equation in standard quadratic form, which is ax2+bx+c=0ax^2 + bx + c = 0.\newline9x+10x2+8=14-9x + 10x^2 + 8 = 14\newlineSubtract 1414 from both sides to get:\newline10x29x6=010x^2 - 9x - 6 = 0
  2. Identifying the coefficients: Now, identify the coefficients aa, bb, and cc from the quadratic equation 10x29x6=010x^2 - 9x - 6 = 0.\newlinea=10a = 10\newlineb=9b = -9\newlinec=6c = -6
  3. Using the quadratic formula: Next, we will use the quadratic formula to find the solutions for x, which is given by:\newlinex = (b±b24ac-b \pm \sqrt{b^2 - 4ac}) / (2a2a)
  4. Substituting values into the formula: Substitute the values of aa, bb, and cc into the quadratic formula.\newlinex=(9)±(9)2410(6)210x = \frac{{-(-9) \pm \sqrt{{(-9)^2 - 4 \cdot 10 \cdot (-6)}}}}{{2 \cdot 10}}\newlinex=9±81+24020x = \frac{{9 \pm \sqrt{{81 + 240}}}}{{20}}\newlinex=9±32120x = \frac{{9 \pm \sqrt{{321}}}}{{20}}
  5. Simplifying the equation: Simplify the square root and the fraction.\newlinex=9±32120x = \frac{9 \pm \sqrt{321}}{20}\newlineSince 321\sqrt{321} cannot be simplified further, we leave it as is.
  6. Finding the solutions: Now we have two possible solutions for x:\newlinex = (9+321)/20(9 + \sqrt{321}) / 20 or x = (9321)/20(9 - \sqrt{321}) / 20\newlineThese correspond to answer choice (D)(D).

More problems from Solve a quadratic equation using the quadratic formula