Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

9=-7x+7x^(2)
Choose 1 answer:
(A) 
x=(-3+-2sqrt6)/(-3)
(B) 
x=-1,(7)/(10)
(c) 
x=(1+-sqrt57)/(-8)
(D) 
x=(-7+-sqrt301)/(-14)

Solve.\newline9=7x+7x2 9=-7 x+7 x^{2} \newlineChoose 11 answer:\newline(A) x=3±263 x=\frac{-3 \pm 2 \sqrt{6}}{-3} \newline(B) x=1,710 x=-1, \frac{7}{10} \newline(C) x=1±578 x=\frac{1 \pm \sqrt{57}}{-8} \newline(D) x=7±30114 x=\frac{-7 \pm \sqrt{301}}{-14}

Full solution

Q. Solve.\newline9=7x+7x2 9=-7 x+7 x^{2} \newlineChoose 11 answer:\newline(A) x=3±263 x=\frac{-3 \pm 2 \sqrt{6}}{-3} \newline(B) x=1,710 x=-1, \frac{7}{10} \newline(C) x=1±578 x=\frac{1 \pm \sqrt{57}}{-8} \newline(D) x=7±30114 x=\frac{-7 \pm \sqrt{301}}{-14}
  1. Identifying coefficients: Now that we have the equation in standard form, we can identify the coefficients aa, bb, and cc.a=7a = 7, b=7b = -7, c=9c = -9
  2. Using the quadratic formula: Next, we will use the quadratic formula to find the solutions for x. The quadratic formula is given by:\newlinex = (b±b24ac-b \pm \sqrt{b^2 - 4ac}) / (2a2a)
  3. Substituting values: We substitute the values of aa, bb, and cc into the quadratic formula.\newlinex=(7)±(7)247(9)27x = \frac{{-(-7) \pm \sqrt{{(-7)^2 - 4 \cdot 7 \cdot (-9)}}}}{{2 \cdot 7}}\newlinex=7±49+25214x = \frac{{7 \pm \sqrt{{49 + 252}}}}{14}\newlinex=7±30114x = \frac{{7 \pm \sqrt{{301}}}}{14}
  4. Simplifying the equation: Now we simplify the square root and the fraction.\newlinex=7±30114x = \frac{7 \pm \sqrt{301}}{14}\newlineSince 301\sqrt{301} cannot be simplified further, we have two possible solutions for x:\newlinex=7+30114x = \frac{7 + \sqrt{301}}{14} or x=730114x = \frac{7 - \sqrt{301}}{14}
  5. Checking the answer choices: We check the answer choices to see which one matches our solutions.\newline(A) x=3±263x = \frac{-3 \pm 2\sqrt{6}}{-3} does not match.\newline(B) x=1,710x = -1, \frac{7}{10} does not match.\newline(C) x=1±578x = \frac{1 \pm \sqrt{57}}{-8} does not match.\newline(D) x=7±30114x = \frac{-7 \pm \sqrt{301}}{-14} matches our solutions after simplifying the negative signs.
  6. Correct answer: Therefore, the correct answer is DD x=7±30114x = \frac{{-7 \pm \sqrt{{301}}}}{{-14}}.

More problems from Solve a quadratic equation using the quadratic formula