Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

9+7x=7x^(2)
Choose 1 answer:
(A) 
x=(-3+-2sqrt6)/(-3)
(B) 
x=-1,(7)/(10)
(C) 
x=(1+-sqrt57)/(-8)
(D) 
x=(-7+-sqrt301)/(-14)

Solve.\newline9+7x=7x2 9+7 x=7 x^{2} \newlineChoose 11 answer:\newline(A) x=3±263 x=\frac{-3 \pm 2 \sqrt{6}}{-3} \newline(B) x=1,710 x=-1, \frac{7}{10} \newline(C) x=1±578 x=\frac{1 \pm \sqrt{57}}{-8} \newline(D) x=7±30114 x=\frac{-7 \pm \sqrt{301}}{-14}

Full solution

Q. Solve.\newline9+7x=7x2 9+7 x=7 x^{2} \newlineChoose 11 answer:\newline(A) x=3±263 x=\frac{-3 \pm 2 \sqrt{6}}{-3} \newline(B) x=1,710 x=-1, \frac{7}{10} \newline(C) x=1±578 x=\frac{1 \pm \sqrt{57}}{-8} \newline(D) x=7±30114 x=\frac{-7 \pm \sqrt{301}}{-14}
  1. Quadratic Equation in Standard Form: Now, we have the quadratic equation in standard form:\newline0=7x27x90 = 7x^2 - 7x - 9\newlineWe can attempt to factor this equation, but it does not factor nicely. Therefore, we will use the quadratic formula to find the solutions for xx. The quadratic formula is:\newlinex=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\newlinewhere a=7a = 7, b=7b = -7, and c=9c = -9.
  2. Quadratic Formula: Let's calculate the discriminant b24acb^2 - 4ac first:\newlineDiscriminant = (7)24×7×(9)(-7)^2 - 4 \times 7 \times (-9)\newlineDiscriminant = 49+25249 + 252\newlineDiscriminant = 301301
  3. Calculate Discriminant: Now that we have the discriminant, we can plug it into the quadratic formula:\newlinex=(7)±3012×7x = \frac{-(-7) \pm \sqrt{301}}{2 \times 7}\newlinex=7±30114x = \frac{7 \pm \sqrt{301}}{14}
  4. Plug into Quadratic Formula: We can simplify this to get the two possible solutions for xx:x=7+30114x = \frac{7 + \sqrt{301}}{14} or x=730114x = \frac{7 - \sqrt{301}}{14}These are the solutions to the quadratic equation.

More problems from Solve a quadratic equation using the quadratic formula