Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

8x+10x^(2)-6=17 x
Choose 1 answer:
(A) 
x=(3)/(4),1
(B) 
x=(4+-sqrt26)/(10)
(C) 
x=(-1+-sqrt109)/(18)
(D) 
x=(9+-sqrt321)/(20)

Solve.\newline8x+10x26=17x 8 x+10 x^{2}-6=17 x \newlineChoose 11 answer:\newline(A) x=34,1 x=\frac{3}{4}, 1 \newline(B) x=4±2610 x=\frac{4 \pm \sqrt{26}}{10} \newline(C) x=1±10918 x=\frac{-1 \pm \sqrt{109}}{18} \newline(D) x=9±32120 x=\frac{9 \pm \sqrt{321}}{20}

Full solution

Q. Solve.\newline8x+10x26=17x 8 x+10 x^{2}-6=17 x \newlineChoose 11 answer:\newline(A) x=34,1 x=\frac{3}{4}, 1 \newline(B) x=4±2610 x=\frac{4 \pm \sqrt{26}}{10} \newline(C) x=1±10918 x=\frac{-1 \pm \sqrt{109}}{18} \newline(D) x=9±32120 x=\frac{9 \pm \sqrt{321}}{20}
  1. Rearrange the equation: First, we need to rearrange the equation into standard quadratic form, ax2+bx+c=0ax^2 + bx + c = 0.\newlineThe given equation is 8x+10x26=17x8x + 10x^2 - 6 = 17x.\newlineSubtract 17x17x from both sides to get 10x29x6=010x^2 - 9x - 6 = 0.
  2. Identify the coefficients: Now, identify the coefficients aa, bb, and cc from the quadratic equation 10x29x6=010x^2 - 9x - 6 = 0.\newlineHere, a=10a = 10, b=9b = -9, and c=6c = -6.
  3. Use the quadratic formula: Next, we will use the quadratic formula to find the solutions for x, which is x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}. Substitute a=10a = 10, b=9b = -9, and c=6c = -6 into the formula.
  4. Calculate the discriminant: Now, calculate the discriminant, which is the part under the square root in the quadratic formula: b24acb^2 - 4ac.\newlineDiscriminant = (9)24(10)(6)=81+240=321(-9)^2 - 4(10)(-6) = 81 + 240 = 321.
  5. Find the solutions for x: With the discriminant calculated, we can now find the two solutions for x.\newlinex = \frac{{99 \pm \sqrt{321321}}}{{22 \cdot 1010}}.
  6. Simplify the solutions: Simplify the solutions for xx.x=9±32120.x = \frac{{9 \pm \sqrt{{321}}}}{20}.
  7. Choose the correct answer: The solutions are in the form that matches one of the answer choices provided.\newlineThe correct answer choice is (D) x=9±32120x = \frac{9 \pm \sqrt{321}}{20}.

More problems from Solve a quadratic equation using the quadratic formula