Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

-7x+8-10x^(2)=7
Choose 1 answer:
(A) 
x=(7+-sqrt89)/(-20)
(B) 
x=(-9+-sqrt249)/(-12)
(c) 
x=(2+-sqrt29)/(5)
(D) 
x=-1,(7)/(10)

Solve.\newline7x+810x2=7 -7 x+8-10 x^{2}=7 \newlineChoose 11 answer:\newline(A) x=7±8920 x=\frac{7 \pm \sqrt{89}}{-20} \newline(B) x=9±24912 x=\frac{-9 \pm \sqrt{249}}{-12} \newline(C) x=2±295 x=\frac{2 \pm \sqrt{29}}{5} \newline(D) x=1,710 x=-1, \frac{7}{10}

Full solution

Q. Solve.\newline7x+810x2=7 -7 x+8-10 x^{2}=7 \newlineChoose 11 answer:\newline(A) x=7±8920 x=\frac{7 \pm \sqrt{89}}{-20} \newline(B) x=9±24912 x=\frac{-9 \pm \sqrt{249}}{-12} \newline(C) x=2±295 x=\frac{2 \pm \sqrt{29}}{5} \newline(D) x=1,710 x=-1, \frac{7}{10}
  1. Rewriting the equation: First, we need to rewrite the equation in standard quadratic form, which is ax2+bx+c=0ax^2 + bx + c = 0.\newline7x+810x2=7-7x + 8 - 10x^2 = 7\newlineMove all terms to one side of the equation to set it equal to zero.\newline10x27x+87=0-10x^2 - 7x + 8 - 7 = 0\newline10x27x+1=0-10x^2 - 7x + 1 = 0\newlineNow we have a=10a = -10, b=7b = -7, and c=1c = 1.
  2. Using the quadratic formula: Next, we will use the quadratic formula to find the solutions for x. The quadratic formula is x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}.\newlineSubstitute a=10a = -10, b=7b = -7, and c=1c = 1 into the formula.\newlinex=(7)±(7)24(10)(1)2(10)x = \frac{{-(-7) \pm \sqrt{{(-7)^2 - 4(-10)(1)}}}}{{2(-10)}}\newlinex=7±49+4020x = \frac{{7 \pm \sqrt{{49 + 40}}}}{{-20}}\newlinex=7±8920x = \frac{{7 \pm \sqrt{{89}}}}{{-20}}
  3. Matching the correct answer: Now we have the solutions in the form of the quadratic formula. We can see that the correct answer matches option (A):\newlinex=7±8920x = \frac{7 \pm \sqrt{89}}{-20}

More problems from Solve a quadratic equation using the quadratic formula