Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

-7x^(2)+x+9=-6x
Choose 1 answer:
(A) 
x=(-7+-sqrt301)/(-14)
(B) 
x=-1,(7)/(10)
(C) 
x=(2+-sqrt5)/(-2)
(D) 
x=(1+-sqrt57)/(-8)

Solve.\newline7x2+x+9=6x -7 x^{2}+x+9=-6 x \newlineChoose 11 answer:\newline(A) x=7±30114 x=\frac{-7 \pm \sqrt{301}}{-14} \newline(B) x=1,710 x=-1, \frac{7}{10} \newline(C) x=2±52 x=\frac{2 \pm \sqrt{5}}{-2} \newline(D) x=1±578 x=\frac{1 \pm \sqrt{57}}{-8}

Full solution

Q. Solve.\newline7x2+x+9=6x -7 x^{2}+x+9=-6 x \newlineChoose 11 answer:\newline(A) x=7±30114 x=\frac{-7 \pm \sqrt{301}}{-14} \newline(B) x=1,710 x=-1, \frac{7}{10} \newline(C) x=2±52 x=\frac{2 \pm \sqrt{5}}{-2} \newline(D) x=1±578 x=\frac{1 \pm \sqrt{57}}{-8}
  1. Moving terms to one side: First, we need to move all terms to one side of the equation to set it equal to zero.\newline7x2+x+9=6x-7x^2 + x + 9 = -6x\newlineAdd 6x6x to both sides to get:\newline7x2+7x+9=0-7x^2 + 7x + 9 = 0
  2. Identifying coefficients: Now, we identify the coefficients aa, bb, and cc in the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0.\newlineIn our equation, 7x2+7x+9=0-7x^2 + 7x + 9 = 0, we have:\newlinea=7a = -7\newlineb=7b = 7\newlinec=9c = 9
  3. Using the quadratic formula: Next, we use the quadratic formula to find the solutions for xx:x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}Substitute a=7a = -7, b=7b = 7, and c=9c = 9 into the formula.x=7±724(7)(9)2(7)x = \frac{{-7 \pm \sqrt{{7^2 - 4(-7)(9)}}}}{{2(-7)}}
  4. Calculating the discriminant: Now, we calculate the discriminant (the part under the square root):\newlineDiscriminant = b24acb^2 - 4ac\newlineDiscriminant = 724(7)(9)7^2 - 4(-7)(9)\newlineDiscriminant = 49+25249 + 252\newlineDiscriminant = 301301
  5. Substituting the discriminant: We substitute the discriminant back into the quadratic formula:\newlinex=7±30114x = \frac{{-7 \pm \sqrt{301}}}{{-14}}
  6. Simplifying the expression: Finally, we simplify the expression: x=7+30114x = \frac{-7 + \sqrt{301}}{-14} or x=730114x = \frac{-7 - \sqrt{301}}{-14} These are the solutions in the simplest radical form.

More problems from Solve a quadratic equation using the quadratic formula