Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

-7x^(2)+7x+1=-8
Choose 1 answer:
(A) 
x=(-7+-sqrt301)/(-14)
(B) 
x=-1,(7)/(10)
(C) 
x=(2+-sqrt5)/(-2)
(D) 
x=(1+-sqrt57)/(-8)

Solve.\newline7x2+7x+1=8 -7 x^{2}+7 x+1=-8 \newlineChoose 11 answer:\newline(A) x=7±30114 x=\frac{-7 \pm \sqrt{301}}{-14} \newline(B) x=1,710 x=-1, \frac{7}{10} \newline(C) x=2±52 x=\frac{2 \pm \sqrt{5}}{-2} \newline(D) x=1±578 x=\frac{1 \pm \sqrt{57}}{-8}

Full solution

Q. Solve.\newline7x2+7x+1=8 -7 x^{2}+7 x+1=-8 \newlineChoose 11 answer:\newline(A) x=7±30114 x=\frac{-7 \pm \sqrt{301}}{-14} \newline(B) x=1,710 x=-1, \frac{7}{10} \newline(C) x=2±52 x=\frac{2 \pm \sqrt{5}}{-2} \newline(D) x=1±578 x=\frac{1 \pm \sqrt{57}}{-8}
  1. Bringing the equation to standard form: First, we need to bring the equation to standard quadratic form ax2+bx+c=0ax^2 + bx + c = 0 by adding 88 to both sides of the equation.\newline7x2+7x+1+8=8+8-7x^2 + 7x + 1 + 8 = -8 + 8\newline7x2+7x+9=0-7x^2 + 7x + 9 = 0
  2. Identifying the coefficients: Now, we identify the coefficients aa, bb, and cc from the quadratic equation 7x2+7x+9=0-7x^2 + 7x + 9 = 0.\newlinea=7a = -7\newlineb=7b = 7\newlinec=9c = 9
  3. Substituting values into the quadratic formula: Next, we substitute the values of aa, bb, and cc into the quadratic formula, which is x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}.\newlinex=(7)±(7)24(7)(9)2(7)x = \frac{{-(7) \pm \sqrt{{(7)^2 - 4(-7)(9)}}}}{{2(-7)}}
  4. Simplifying the expression under the square root: We simplify the expression under the square root (the discriminant).(7)24(7)(9)=49+252=301\sqrt{(7)^2 - 4(-7)(9)} = \sqrt{49 + 252} = \sqrt{301}
  5. Substituting the discriminant back into the quadratic formula: Now we substitute the discriminant back into the quadratic formula.\newlinex = 7±30114\frac{{-7 \pm \sqrt{{301}}}}{{-14}}
  6. Matching the solution with the answer choices: We can see that the solution matches one of the given answer choices, which is (A) x=7±30114x = \frac{-7 \pm \sqrt{301}}{-14}.

More problems from Solve a quadratic equation using the quadratic formula