Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

-7x+1-10x^(2)=0
Choose 1 answer:
(A) 
x=(7+-sqrt89)/(-20)
(B) 
x=(-1+-sqrt73)/(9)
(C) 
x=(-3+-sqrt105)/(-12)
(D) 
x=(-9+-sqrt249)/(-12)

Solve.\newline7x+110x2=0 -7 x+1-10 x^{2}=0 \newlineChoose 11 answer:\newline(A) x=7±8920 x=\frac{7 \pm \sqrt{89}}{-20} \newline(B) x=1±739 x=\frac{-1 \pm \sqrt{73}}{9} \newline(C) x=3±10512 x=\frac{-3 \pm \sqrt{105}}{-12} \newline(D) x=9±24912 x=\frac{-9 \pm \sqrt{249}}{-12}

Full solution

Q. Solve.\newline7x+110x2=0 -7 x+1-10 x^{2}=0 \newlineChoose 11 answer:\newline(A) x=7±8920 x=\frac{7 \pm \sqrt{89}}{-20} \newline(B) x=1±739 x=\frac{-1 \pm \sqrt{73}}{9} \newline(C) x=3±10512 x=\frac{-3 \pm \sqrt{105}}{-12} \newline(D) x=9±24912 x=\frac{-9 \pm \sqrt{249}}{-12}
  1. Write quadratic equation in standard form: Write the quadratic equation in standard form.\newlineThe standard form of a quadratic equation is ax2+bx+c=0ax^2 + bx + c = 0. Rearrange the given equation to match this form.\newline10x27x+1=0-10x^2 - 7x + 1 = 0\newlineHere, a=10a = -10, b=7b = -7, and c=1c = 1.
  2. Apply quadratic formula to find solutions: Apply the quadratic formula to find the solutions for xx.\newlineThe quadratic formula is x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}.\newlineSubstitute a=10a = -10, b=7b = -7, and c=1c = 1 into the formula.\newlinex=(7)±(7)24(10)(1)2(10)x = \frac{{-(-7) \pm \sqrt{{(-7)^2 - 4(-10)(1)}}}}{{2(-10)}}\newlinex=7±49+4020x = \frac{{7 \pm \sqrt{{49 + 40}}}}{{-20}}
  3. Simplify expression and solve for x: Simplify the expression under the square root and solve for x.\newlinex=7±49+4020x = \frac{7 \pm \sqrt{49 + 40}}{-20}\newlinex=7±8920x = \frac{7 \pm \sqrt{89}}{-20}\newlineThis matches answer choice (A).

More problems from Solve a quadratic equation using the quadratic formula