Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

-6x=3x^(2)+1
Choose 1 answer:
(A) 
x=(2+-4sqrt2)/(-7)
(B) 
x=(5+-sqrt67)/(6)
(C) 
x=(3+-sqrt6)/(-3)
(D) 
x=-3+-2sqrt2

Solve.\newline6x=3x2+1 -6 x=3 x^{2}+1 \newlineChoose 11 answer:\newline(A) x=2±427 x=\frac{2 \pm 4 \sqrt{2}}{-7} \newline(B) x=5±676 x=\frac{5 \pm \sqrt{67}}{6} \newline(C) x=3±63 x=\frac{3 \pm \sqrt{6}}{-3} \newline(D) x=3±22 x=-3 \pm 2 \sqrt{2}

Full solution

Q. Solve.\newline6x=3x2+1 -6 x=3 x^{2}+1 \newlineChoose 11 answer:\newline(A) x=2±427 x=\frac{2 \pm 4 \sqrt{2}}{-7} \newline(B) x=5±676 x=\frac{5 \pm \sqrt{67}}{6} \newline(C) x=3±63 x=\frac{3 \pm \sqrt{6}}{-3} \newline(D) x=3±22 x=-3 \pm 2 \sqrt{2}
  1. Rearranging the equation: First, we need to rearrange the equation into the standard quadratic form ax2+bx+c=0ax^2 + bx + c = 0.\newlineSo we move all terms to one side of the equation to get:\newline3x2+6x+1=03x^2 + 6x + 1 = 0
  2. Identifying the coefficients: Now, we identify the coefficients for the quadratic formula, where a=3a = 3, b=6b = 6, and c=1c = 1.
  3. Applying the quadratic formula: Next, we apply the quadratic formula x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}.\newlineSubstitute a=3a = 3, b=6b = 6, and c=1c = 1 into the formula to get:\newlinex=(6)±(6)24(3)(1)2(3)x = \frac{{-(6) \pm \sqrt{{(6)^2 - 4(3)(1)}}}}{{2(3)}}
  4. Simplifying the terms: Simplify the terms under the square root and the constants:\newlinex=6±36126x = \frac{{-6 \pm \sqrt{{36 - 12}}}}{6}\newlinex=6±246x = \frac{{-6 \pm \sqrt{{24}}}}{6}
  5. Factoring out perfect squares: We can simplify 24\sqrt{24} by factoring out perfect squares:\newline24=4×6=26\sqrt{24} = \sqrt{4 \times 6} = 2\sqrt{6}
  6. Substituting back into the equation: Now, we substitute 262\sqrt{6} back into the equation:\newlinex=6±266x = \frac{-6 \pm 2\sqrt{6}}{6}
  7. Dividing all terms by 22: We can simplify the equation by dividing all terms by 22:\newlinex=3±63x = \frac{{-3 \pm \sqrt{6}}}{{3}}
  8. Matching the solutions to answer choices: Finally, we can see that the solutions match one of the given answer choices:\newlinex=3±63x = \frac{{-3 \pm \sqrt{6}}}{{3}}\newlineThis corresponds to answer choice (C).

More problems from Solve a quadratic equation using the quadratic formula