Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

6x^(2)+7x+9=11x^(2)
Choose 1 answer:
(A) 
x=1+-sqrt11
(B) 
x=(5+-sqrt145)/(12)
(C) 
x=(-2+-sqrt31)/(-9)
(D) 
x=(-7+-sqrt229)/(-10)

Solve.\newline6x2+7x+9=11x2 6 x^{2}+7 x+9=11 x^{2} \newlineChoose 11 answer:\newline(A) x=1±11 x=1 \pm \sqrt{11} \newline(B) x=5±14512 x=\frac{5 \pm \sqrt{145}}{12} \newline(C) x=2±319 x=\frac{-2 \pm \sqrt{31}}{-9} \newline(D) x=7±22910 x=\frac{-7 \pm \sqrt{229}}{-10}

Full solution

Q. Solve.\newline6x2+7x+9=11x2 6 x^{2}+7 x+9=11 x^{2} \newlineChoose 11 answer:\newline(A) x=1±11 x=1 \pm \sqrt{11} \newline(B) x=5±14512 x=\frac{5 \pm \sqrt{145}}{12} \newline(C) x=2±319 x=\frac{-2 \pm \sqrt{31}}{-9} \newline(D) x=7±22910 x=\frac{-7 \pm \sqrt{229}}{-10}
  1. Combine like terms: Now, combine like terms to simplify the equation. 5x2+7x+9=0-5x^2 + 7x + 9 = 0
  2. Use quadratic formula: Next, we will use the quadratic formula to solve for x, which is x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}. Here, a=5a = -5, b=7b = 7, and c=9c = 9.
  3. Calculate discriminant: Calculate the discriminant b24acb^2 - 4ac.\newlineDiscriminant = 724(5)(9)7^2 - 4(-5)(9)\newlineDiscriminant = 49+18049 + 180\newlineDiscriminant = 229229
  4. Substitute values into formula: Now, substitute the values of aa, bb, and the discriminant into the quadratic formula.x=7±2292(5)x = \frac{{-7 \pm \sqrt{229}}}{{2 \cdot (-5)}}
  5. Simplify expression: Simplify the expression. x=7±22910x = \frac{{-7 \pm \sqrt{229}}}{{-10}}
  6. Match answer choice: This matches one of the given answer choices, which is (D) x=7±22910x = \frac{{-7 \pm \sqrt{229}}}{{-10}}.

More problems from Solve a quadratic equation using the quadratic formula