Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

-6x^(2)-2-3x=-8
Choose 1 answer:
(A) 
x=(5+-sqrt57)/(16)
(B) 
x=(-4+-sqrt34)/(3)
(C) 
x=(-7+-3sqrt41)/(-16)
(D) 
x=(1+-sqrt17)/(-4)

Solve.\newline6x223x=8 -6 x^{2}-2-3 x=-8 \newlineChoose 11 answer:\newline(A) x=5±5716 x=\frac{5 \pm \sqrt{57}}{16} \newline(B) x=4±343 x=\frac{-4 \pm \sqrt{34}}{3} \newline(C) x=7±34116 x=\frac{-7 \pm 3 \sqrt{41}}{-16} \newline(D) x=1±174 x=\frac{1 \pm \sqrt{17}}{-4}

Full solution

Q. Solve.\newline6x223x=8 -6 x^{2}-2-3 x=-8 \newlineChoose 11 answer:\newline(A) x=5±5716 x=\frac{5 \pm \sqrt{57}}{16} \newline(B) x=4±343 x=\frac{-4 \pm \sqrt{34}}{3} \newline(C) x=7±34116 x=\frac{-7 \pm 3 \sqrt{41}}{-16} \newline(D) x=1±174 x=\frac{1 \pm \sqrt{17}}{-4}
  1. Bring to Standard Form: First, we need to bring the equation to standard quadratic form ax2+bx+c=0ax^2 + bx + c = 0 by moving all terms to one side.\newline6x23x2=8-6x^2 - 3x - 2 = -8\newlineNow, add 88 to both sides to get all terms on one side.\newline6x23x2+8=8+8-6x^2 - 3x - 2 + 8 = -8 + 8
  2. Simplify Equation: Simplify the equation by combining like terms. \newline6x23x+6=0-6x^2 - 3x + 6 = 0\newlineNow we have a quadratic equation in standard form.
  3. Calculate Discriminant: To solve the quadratic equation, we can use the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=6a = -6, b=3b = -3, and c=6c = 6. First, calculate the discriminant (b24acb^2 - 4ac). Discriminant = (3)24(6)(6)(-3)^2 - 4(-6)(6) Discriminant = 9(144)9 - (-144) Discriminant = 9+1449 + 144 Discriminant = 153153
  4. Apply Quadratic Formula: Now, plug the values of aa, bb, and the discriminant into the quadratic formula.\newlinex=(3)±15326x = \frac{-(-3) \pm \sqrt{153}}{2 \cdot -6}\newlinex=3±15312x = \frac{3 \pm \sqrt{153}}{-12}
  5. Simplify Square Root: Simplify the square root of the discriminant if possible. Since 153153 is not a perfect square, we leave it as 153\sqrt{153}. Now we have two possible solutions for xx: x=3+15312x = \frac{3 + \sqrt{153}}{-12} or x=315312x = \frac{3 - \sqrt{153}}{-12}
  6. Factor Out 33: We can simplify the solutions further by factoring out a 33 in the numerator.x=3(1+153/3)12x = \frac{3(1 + \sqrt{153}/3)}{-12} or x=3(1153/3)12x = \frac{3(1 - \sqrt{153}/3)}{-12}x=(1+153/3)4x = \frac{(1 + \sqrt{153}/3)}{-4} or x=(1153/3)4x = \frac{(1 - \sqrt{153}/3)}{-4}
  7. Check Options: Now, we compare our solutions with the given options. None of the options match our solutions exactly, but we can check if the discriminant we found 153153 can be simplified to match any of the options.153\sqrt{153} can be simplified to 17×9\sqrt{17\times 9}, which is 3×173\times\sqrt{17}.
  8. Replace Square Root: Replace 153\sqrt{153} with 3173\sqrt{17} in our solutions.\newlinex=1+3173/(4)x = \frac{1 + 3\sqrt{17}}{3} / (-4) or x=13173/(4)x = \frac{1 - 3\sqrt{17}}{3} / (-4)\newlinex=1+174x = \frac{1 + \sqrt{17}}{-4} or x=1174x = \frac{1 - \sqrt{17}}{-4}
  9. Match Solutions: Now, our solutions match option (D). \newlinex=1+174x = \frac{1 + \sqrt{17}}{-4} or x=1174x = \frac{1 - \sqrt{17}}{-4}

More problems from Solve a quadratic equation using the quadratic formula