Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

-6x-1+5x^(2)=8x^(2)
Choose 1 answer:
(A) 
x=(5+-sqrt67)/(6)
(B) 
x=1,(7)/(2)
(C) 
x=(7+-3sqrt41)/(-20)
(D) 
x=(3+-sqrt6)/(-3)

Solve.\newline6x1+5x2=8x2 -6 x-1+5 x^{2}=8 x^{2} \newlineChoose 11 answer:\newline(A) x=5±676 x=\frac{5 \pm \sqrt{67}}{6} \newline(B) x=1,72 x=1, \frac{7}{2} \newline(C) x=7±34120 x=\frac{7 \pm 3 \sqrt{41}}{-20} \newline(D) x=3±63 x=\frac{3 \pm \sqrt{6}}{-3}

Full solution

Q. Solve.\newline6x1+5x2=8x2 -6 x-1+5 x^{2}=8 x^{2} \newlineChoose 11 answer:\newline(A) x=5±676 x=\frac{5 \pm \sqrt{67}}{6} \newline(B) x=1,72 x=1, \frac{7}{2} \newline(C) x=7±34120 x=\frac{7 \pm 3 \sqrt{41}}{-20} \newline(D) x=3±63 x=\frac{3 \pm \sqrt{6}}{-3}
  1. Rearrange equation and set equal to zero: First, we need to rearrange the equation to have all terms on one side and set it equal to zero.\newline6x1+5x2=8x2-6x - 1 + 5x^2 = 8x^2\newlineSubtract 5x25x^2 from both sides to get:\newline6x1=3x2-6x - 1 = 3x^2\newlineNow, rearrange the terms to get a standard quadratic equation form:\newline3x2+6x+1=03x^2 + 6x + 1 = 0
  2. Use quadratic formula to solve for x: Next, we will use the quadratic formula to solve for x, which is x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}.\newlineIn our equation, a=3a = 3, b=6b = 6, and c=1c = 1.
  3. Substitute values into quadratic formula: Now, we substitute the values of aa, bb, and cc into the quadratic formula:\newlinex=(6)±(6)24(3)(1)2(3)x = \frac{{-\left(6\right) \pm \sqrt{{\left(6\right)^2 - 4(3)(1)}}}}{{2(3)}}\newlinex=6±36126x = \frac{{-6 \pm \sqrt{36 - 12}}}{{6}}\newlinex=6±246x = \frac{{-6 \pm \sqrt{24}}}{{6}}
  4. Simplify square root and equation: Simplify the square root and the equation:\newlinex=6±246x = \frac{{-6 \pm \sqrt{24}}}{{6}}\newlinex=6±266x = \frac{{-6 \pm 2\sqrt{6}}}{{6}}\newlineNow, we can factor out a 22 from the numerator:\newlinex=2(3±6)6x = \frac{{2(-3 \pm \sqrt{6})}}{{6}}
  5. Factor out a 2 2 and simplify fraction: Finally, we simplify the fraction by dividing both the numerator and the denominator by 2 2 :\newlinex=3±63 x = \frac{{-3 \pm \sqrt{6}}}{{3}}

More problems from Solve a quadratic equation using the quadratic formula