Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

6-6x^(2)=3x
Choose 1 answer:
(A) 
x=3,-(1)/(2)
(B) 
x=(1+-sqrt17)/(-4)
(C) 
x=(-4+-sqrt34)/(3)
(D) 
x=(7+-sqrt193)/(-12)

Solve.\newline66x2=3x 6-6 x^{2}=3 x \newlineChoose 11 answer:\newline(A) x=3,12 x=3,-\frac{1}{2} \newline(B) x=1±174 x=\frac{1 \pm \sqrt{17}}{-4} \newline(C) x=4±343 x=\frac{-4 \pm \sqrt{34}}{3} \newline(D) x=7±19312 x=\frac{7 \pm \sqrt{193}}{-12}

Full solution

Q. Solve.\newline66x2=3x 6-6 x^{2}=3 x \newlineChoose 11 answer:\newline(A) x=3,12 x=3,-\frac{1}{2} \newline(B) x=1±174 x=\frac{1 \pm \sqrt{17}}{-4} \newline(C) x=4±343 x=\frac{-4 \pm \sqrt{34}}{3} \newline(D) x=7±19312 x=\frac{7 \pm \sqrt{193}}{-12}
  1. Rearrange Equation: First, we need to rearrange the equation into the standard quadratic form ax2+bx+c=0ax^2 + bx + c = 0.\newline66x2=3x6 - 6x^2 = 3x\newlineMove all terms to one side of the equation to get zero on the other side.\newline6x23x+6=0-6x^2 - 3x + 6 = 0\newlineNow, we have a quadratic equation in the form ax2+bx+c=0ax^2 + bx + c = 0, where a=6a = -6, b=3b = -3, and c=6c = 6.
  2. Quadratic Formula: Next, we will use the quadratic formula to find the solutions for xx. The quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Here, a=6a = -6, b=3b = -3, and c=6c = 6.
  3. Calculate Discriminant: Now, we calculate the discriminant, which is the part under the square root in the quadratic formula: b24acb^2 - 4ac.\newlineDiscriminant = (3)24(6)(6)(-3)^2 - 4(-6)(6)\newlineDiscriminant = 9(144)9 - (-144)\newlineDiscriminant = 9+1449 + 144\newlineDiscriminant = 153153
  4. Plug Values into Formula: With the discriminant calculated, we can now plug the values into the quadratic formula.\newlinex=(3)±1532(6)x = \frac{-(-3) \pm \sqrt{153}}{2(-6)}\newlinex=3±15312x = \frac{3 \pm \sqrt{153}}{-12}
  5. Simplify Square Root: We simplify the square root of 153153 to get the exact solutions.\newline153\sqrt{153} is not a perfect square, so we leave it as is.\newlinex=3±15312x = \frac{3 \pm \sqrt{153}}{-12}
  6. Compare Solutions: Now we have two possible solutions for xx, which correspond to the ±\pm in the formula.x=3+15312x = \frac{3 + \sqrt{153}}{-12} or x=315312x = \frac{3 - \sqrt{153}}{-12}These are the exact solutions in simplified radical form.
  7. Compare Solutions: Now we have two possible solutions for xx, which correspond to the "±" in the formula.x=(3+153)(12)x = \frac{(3 + \sqrt{153})}{(-12)} or x=(3153)(12)x = \frac{(3 - \sqrt{153})}{(-12)}These are the exact solutions in simplified radical form.We can now compare our solutions to the answer choices given.(A)x=3,(12)(A) x = 3, -(\frac{1}{2}) - This does not match our solutions.(B)x=(1±17)(4)(B) x = \frac{(1 ± \sqrt{17})}{(-4)} - This does not match our solutions.(C)x=(4±34)(3)(C) x = \frac{(-4 ± \sqrt{34})}{(3)} - This does not match our solutions.(D)x=(7±193)(12)(D) x = \frac{(7 ± \sqrt{193})}{(-12)} - This does not match our solutions.Our solutions do not match any of the given answer choices exactly, which suggests there may be a mistake in the answer choices or in our calculations.

More problems from Solve a quadratic equation using the quadratic formula