Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

6-6x^(2)-3x=0
Choose 1 answer:
(A) 
x=(7+-sqrt193)/(-12)
(B) 
x=(5+-sqrt57)/(16)
(C) 
x=(1+-sqrt17)/(-4)
(D) 
x=(-4+-sqrt34)/(3)

Solve.\newline66x23x=06-6x^{2}-3x=0\newlineChoose 11 answer:\newline(A) \newlinex=7±19312x=\frac{7\pm\sqrt{193}}{-12}\newline(B) \newlinex=5±5716x=\frac{5\pm\sqrt{57}}{16}\newline(C) \newlinex=1±174x=\frac{1\pm\sqrt{17}}{-4}\newline(D) \newlinex=4±343x=\frac{-4\pm\sqrt{34}}{3}

Full solution

Q. Solve.\newline66x23x=06-6x^{2}-3x=0\newlineChoose 11 answer:\newline(A) \newlinex=7±19312x=\frac{7\pm\sqrt{193}}{-12}\newline(B) \newlinex=5±5716x=\frac{5\pm\sqrt{57}}{16}\newline(C) \newlinex=1±174x=\frac{1\pm\sqrt{17}}{-4}\newline(D) \newlinex=4±343x=\frac{-4\pm\sqrt{34}}{3}
  1. Identify coefficients of quadratic equation: Identify the coefficients of the quadratic equation.\newlineThe quadratic equation is given by 66x23x=06 - 6x^2 - 3x = 0. To compare it with the standard form ax2+bx+c=0ax^2 + bx + c = 0, we need to rearrange the terms to get 6x23x+6=0-6x^2 - 3x + 6 = 0. Now we can identify the coefficients: a=6a = -6, b=3b = -3, and c=6c = 6.
  2. Apply quadratic formula: Apply the quadratic formula to find the solutions for xx.\newlineThe quadratic formula is x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}. We will substitute a=6a = -6, b=3b = -3, and c=6c = 6 into the formula.
  3. Calculate discriminant: Calculate the discriminant, which is the part under the square root in the quadratic formula: b24acb^2 - 4ac.\newlineThe discriminant is (3)24(6)(6)=9(144)=9+144=153(-3)^2 - 4(-6)(6) = 9 - (-144) = 9 + 144 = 153.
  4. Substitute values into quadratic formula: Substitute the values of aa, bb, and the discriminant into the quadratic formula.\newlinex=(3)±1532(6)x = \frac{{-(-3) \pm \sqrt{153}}}{{2(-6)}}\newlinex=3±15312x = \frac{{3 \pm \sqrt{153}}}{{-12}}
  5. Simplify solutions: Simplify the solutions.\newlineSince 153\sqrt{153} cannot be simplified to an integer or a simple fraction, we leave it as is. The two possible solutions for xx are:\newlinex=3+15312x = \frac{3 + \sqrt{153}}{-12} or x=315312x = \frac{3 - \sqrt{153}}{-12}
  6. Match solutions with answer choices: Match the solutions with the given answer choices.\newlineThe solutions we found are x=3+15312x = \frac{3 + \sqrt{153}}{-12} or x=315312x = \frac{3 - \sqrt{153}}{-12}. We need to find which answer choice corresponds to these solutions. By looking at the answer choices, we can see that the correct answer is:\newline(A) x=7±19312x = \frac{7 \pm \sqrt{193}}{-12}\newline(B) x=5±5716x = \frac{5 \pm \sqrt{57}}{16}\newline(C) x=1±174x = \frac{1 \pm \sqrt{17}}{-4}\newline(D) x=4±343x = \frac{-4 \pm \sqrt{34}}{3}\newlineNone of these match our solutions exactly, so we must have made a mistake.

More problems from Solve a quadratic equation using the quadratic formula