Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

-6+3x-9x^(2)=-16
Choose 1 answer:
(A) 
x=(7+-sqrt77)/(2)
(B) 
x=(-5+-sqrt305)/(14)
(C) 
x=(-1+-2sqrt2)/(-7)
(D) 
x=(-1+-sqrt41)/(-6)

Solve.\newline6+3x9x2=16 -6+3 x-9 x^{2}=-16 \newlineChoose 11 answer:\newline(A) x=7±772 x=\frac{7 \pm \sqrt{77}}{2} \newline(B) x=5±30514 x=\frac{-5 \pm \sqrt{305}}{14} \newline(C) x=1±227 x=\frac{-1 \pm 2 \sqrt{2}}{-7} \newline(D) x=1±416 x=\frac{-1 \pm \sqrt{41}}{-6}

Full solution

Q. Solve.\newline6+3x9x2=16 -6+3 x-9 x^{2}=-16 \newlineChoose 11 answer:\newline(A) x=7±772 x=\frac{7 \pm \sqrt{77}}{2} \newline(B) x=5±30514 x=\frac{-5 \pm \sqrt{305}}{14} \newline(C) x=1±227 x=\frac{-1 \pm 2 \sqrt{2}}{-7} \newline(D) x=1±416 x=\frac{-1 \pm \sqrt{41}}{-6}
  1. Write equation in standard form: Write the equation in standard form.\newlineTo solve the quadratic equation, we first need to write it in the standard form ax2+bx+c=0ax^2 + bx + c = 0. We have the equation 6+3x9x2=16-6 + 3x - 9x^2 = -16. Let's move all terms to one side to get it in standard form.\newline9x2+3x6=16-9x^2 + 3x - 6 = -16\newlineNow, add 1616 to both sides of the equation.\newline9x2+3x6+16=0-9x^2 + 3x - 6 + 16 = 0\newline9x2+3x+10=0-9x^2 + 3x + 10 = 0
  2. Identify values of aa, bb, and cc: Identify the values of aa, bb, and cc.\newlineNow that we have the equation in standard form, we can identify the coefficients aa, bb, and cc, which we will use in the quadratic formula.\newlinea=9a = -9\newlinebb00\newlinebb11
  3. Substitute values into quadratic formula: Substitute the values into the quadratic formula.\newlineThe quadratic formula is x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}. Let's substitute the values of aa, bb, and cc into the formula.\newlinex=(3)±(3)24(9)(10)2(9)x = \frac{{-(3) \pm \sqrt{{(3)^2 - 4(-9)(10)}}}}{{2(-9)}}\newlinex=3±9+36018x = \frac{{-3 \pm \sqrt{{9 + 360}}}}{{-18}}
  4. Simplify under square root and solve for x: Simplify under the square root and solve for x.\newlineNow we simplify the expression under the square root and then find the values of x.\newlinex=3±36918x = \frac{{-3 \pm \sqrt{{369}}}}{{-18}}\newlineWe cannot simplify 369\sqrt{{369}} further, so we will use this value as it is.
  5. Find two possible solutions for x: Find the two possible solutions for x.\newlineWe have two possible solutions for x, corresponding to the '\pm' in the quadratic formula.\newlinex = \frac{{3-3 + \sqrt{369369}}}{{18-18}} or x = \frac{{3-3 - \sqrt{369369}}}{{18-18}}
  6. Simplify the solutions: Simplify the solutions.\newlineWe can simplify the solutions by dividing both numerator and denominator by 3-3 to make the denominator positive.\newlinex=13696x = \frac{1 - \sqrt{369}}{6} or x=1+3696x = \frac{1 + \sqrt{369}}{6}
  7. Check the answer choices: Check the answer choices.\newlineNow we compare our solutions with the given answer choices.\newline(A) x=7±772x = \frac{7 \pm \sqrt{77}}{2}\newline(B) x=5±30514x = \frac{-5 \pm \sqrt{305}}{14}\newline(C) x=1±227x = \frac{-1 \pm 2\sqrt{2}}{-7}\newline(D) x=1±416x = \frac{-1 \pm \sqrt{41}}{-6}\newlineNone of these match our solutions exactly, but we can see that answer choice (D) is the closest in form to our solutions. However, the numbers do not match, so there seems to be a mistake.

More problems from Solve a quadratic equation using the quadratic formula