Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

6+2x^(2)-3x=8x^(2)
Choose 1 answer:
(A) 
x=3,-(1)/(2)
(B) 
x=(5+-sqrt57)/(16)
(c) 
x=(1+-sqrt17)/(-4)
(D) 
x=(-4+-sqrt34)/(3)

Solve.\newline6+2x23x=8x2 6+2 x^{2}-3 x=8 x^{2} \newlineChoose 11 answer:\newline(A) x=3,12 x=3,-\frac{1}{2} \newline(B) x=5±5716 x=\frac{5 \pm \sqrt{57}}{16} \newline(C) x=1±174 x=\frac{1 \pm \sqrt{17}}{-4} \newline(D) x=4±343 x=\frac{-4 \pm \sqrt{34}}{3}

Full solution

Q. Solve.\newline6+2x23x=8x2 6+2 x^{2}-3 x=8 x^{2} \newlineChoose 11 answer:\newline(A) x=3,12 x=3,-\frac{1}{2} \newline(B) x=5±5716 x=\frac{5 \pm \sqrt{57}}{16} \newline(C) x=1±174 x=\frac{1 \pm \sqrt{17}}{-4} \newline(D) x=4±343 x=\frac{-4 \pm \sqrt{34}}{3}
  1. Setting the equation to zero: First, we need to set the equation to zero by moving all terms to one side.\newline6+2x23x=8x26 + 2x^2 - 3x = 8x^2\newlineSubtract 8x28x^2 from both sides to get:\newline63x6x2=06 - 3x - 6x^2 = 0\newlineRearrange the terms to get a standard quadratic equation form:\newline6x23x+6=0-6x^2 - 3x + 6 = 0\newlineNow, we can multiply the entire equation by 1-1 to make the x2x^2 coefficient positive:\newline6x2+3x6=06x^2 + 3x - 6 = 0
  2. Rearranging the terms: Now, we will use the quadratic formula to solve for xx. The quadratic formula is:\newlinex=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}\newlineFor our equation, a=6a = 6, b=3b = 3, and c=6c = -6.
  3. Using the quadratic formula: Let's calculate the discriminant (the part under the square root in the quadratic formula):\newlineDiscriminant = b24acb^2 - 4ac\newlineDiscriminant = (3)24(6)(6)(3)^2 - 4(6)(-6)\newlineDiscriminant = 9+1449 + 144\newlineDiscriminant = 153153
  4. Calculating the discriminant: Now we can substitute aa, bb, and the discriminant into the quadratic formula:\newlinex=3±15326x = \frac{{-3 \pm \sqrt{153}}}{{2 \cdot 6}}\newlinex=3±15312x = \frac{{-3 \pm \sqrt{153}}}{{12}}
  5. Substituting values into the quadratic formula: We can simplify 153\sqrt{153} to get the exact solutions:\newlinex=3±15312x = \frac{-3 \pm \sqrt{153}}{12}\newlineSince 153\sqrt{153} cannot be simplified to an integer or a simple fraction, we will leave it as is.
  6. Simplifying the square root: Now we have two possible solutions for x:\newlinex=3+15312x = \frac{{-3 + \sqrt{153}}}{{12}} or x=315312x = \frac{{-3 - \sqrt{153}}}{{12}}\newlineThese are the exact solutions in their simplest form.

More problems from Solve a quadratic equation using the quadratic formula