Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

-4+x+7x^(2)=0
Choose 1 answer:
(A) 
x=(-7+-sqrt65)/(8)
(B) 
x=(-1+-sqrt5)/(2)
(C) 
x=(-1+-sqrt113)/(14)
(D) 
x=(3+-sqrt21)/(6)

Solve.\newline4+x+7x2=0 -4+x+7 x^{2}=0 \newlineChoose 11 answer:\newline(A) x=7±658 x=\frac{-7 \pm \sqrt{65}}{8} \newline(B) x=1±52 x=\frac{-1 \pm \sqrt{5}}{2} \newline(C) x=1±11314 x=\frac{-1 \pm \sqrt{113}}{14} \newline(D) x=3±216 x=\frac{3 \pm \sqrt{21}}{6}

Full solution

Q. Solve.\newline4+x+7x2=0 -4+x+7 x^{2}=0 \newlineChoose 11 answer:\newline(A) x=7±658 x=\frac{-7 \pm \sqrt{65}}{8} \newline(B) x=1±52 x=\frac{-1 \pm \sqrt{5}}{2} \newline(C) x=1±11314 x=\frac{-1 \pm \sqrt{113}}{14} \newline(D) x=3±216 x=\frac{3 \pm \sqrt{21}}{6}
  1. Rewriting the equation: First, let's rewrite the equation in standard quadratic form, which is ax2+bx+c=0 ax^2 + bx + c = 0 .\newlineThe given equation is 4+x+7x2=0 -4 + x + 7x^2 = 0 .\newlineTo rewrite it, we need to rearrange the terms in descending order of the power of x x :\newline7x2+x4=0 7x^2 + x - 4 = 0 .\newlineNow we can identify the coefficients a a , b b , and c c for the quadratic formula.\newlinea=7 a = 7 , b=1 b = 1 , and c=4 c = -4 .
  2. Identifying coefficients: Next, we will use the quadratic formula to find the solutions for x x :\newlineThe quadratic formula is x=b±b24ac2a x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}} .\newlineSubstitute a=7 a = 7 , b=1 b = 1 , and c=4 c = -4 into the formula:\newlinex=(1)±(1)24(7)(4)2(7) x = \frac{{-(1) \pm \sqrt{{(1)^2 - 4(7)(-4)}}}}{{2(7)}} .
  3. Using the quadratic formula: Now, let's calculate the discriminant, which is the part under the square root in the quadratic formula:\newlineb24ac=124(7)(4) \sqrt{{b^2 - 4ac}} = \sqrt{{1^2 - 4(7)(-4)}} .\newline1+112=113 \sqrt{{1 + 112}} = \sqrt{{113}} .
  4. Calculating the discriminant: We can now write the solutions using the values we have calculated:\newlinex=1±11314 x = \frac{{-1 \pm \sqrt{{113}}}}{{14}} .\newlineThis matches one of the given answer choices, which is (C).

More problems from Solve a quadratic equation using the quadratic formula