Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

3x-9x^(2)=-10
Choose 1 answer:
(A) 
x=(7+-sqrt77)/(2)
(B) 
x=(-2+-sqrt13)/(-3)
(C) 
x=(-5+-sqrt305)/(14)
(D) 
x=(-1+-sqrt41)/(-6)

Solve.\newline3x9x2=10 3 x-9 x^{2}=-10 \newlineChoose 11 answer:\newline(A) x=7±772 x=\frac{7 \pm \sqrt{77}}{2} \newline(B) x=2±133 x=\frac{-2 \pm \sqrt{13}}{-3} \newline(C) x=5±30514 x=\frac{-5 \pm \sqrt{305}}{14} \newline(D) x=1±416 x=\frac{-1 \pm \sqrt{41}}{-6}

Full solution

Q. Solve.\newline3x9x2=10 3 x-9 x^{2}=-10 \newlineChoose 11 answer:\newline(A) x=7±772 x=\frac{7 \pm \sqrt{77}}{2} \newline(B) x=2±133 x=\frac{-2 \pm \sqrt{13}}{-3} \newline(C) x=5±30514 x=\frac{-5 \pm \sqrt{305}}{14} \newline(D) x=1±416 x=\frac{-1 \pm \sqrt{41}}{-6}
  1. Rearrange Equation: First, we need to rearrange the equation into standard quadratic form, which is ax2+bx+c=0ax^2 + bx + c = 0. To do this, we add 9x29x^2 to both sides and add 1010 to both sides of the equation.\newline3x9x2=103x - 9x^2 = -10\newline9x23x+10=09x^2 - 3x + 10 = 0
  2. Use Quadratic Formula: Now that we have the quadratic equation in standard form, we can use the quadratic formula to find the solutions for xx. The quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where aa, bb, and cc are the coefficients from the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0. In our case, a=9a = 9, b=3b = -3, and c=10c = 10.
  3. Calculate Discriminant: Next, we calculate the discriminant, which is the part under the square root in the quadratic formula: b24acb^2 - 4ac.\newlineDiscriminant = (3)24(9)(10)(-3)^2 - 4(9)(10)\newlineDiscriminant = 93609 - 360\newlineDiscriminant = 351-351
  4. Identify Complex Solutions: Since the discriminant is negative (351-351), there are no real solutions to the equation. The solutions are complex numbers. However, none of the answer choices (AA, BB, CC, DD) provided are complex numbers, which means there might be a mistake in the problem statement or the answer choices.

More problems from Solve a quadratic equation using the quadratic formula