Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

3x=9x^(2)-10
Choose 1 answer:
(A) 
x=(7+-sqrt77)/(2)
(B) 
x=(-2+-sqrt13)/(-3)
(C) 
x=(-5+-sqrt305)/(14)
(D) 
x=(-1+-sqrt41)/(-6)

Solve.\newline3x=9x210 3 x=9 x^{2}-10 \newlineChoose 11 answer:\newline(A) x=7±772 x=\frac{7 \pm \sqrt{77}}{2} \newline(B) x=2±133 x=\frac{-2 \pm \sqrt{13}}{-3} \newline(ᄃ) x=5±30514 x=\frac{-5 \pm \sqrt{305}}{14} \newline(D) x=1±416 x=\frac{-1 \pm \sqrt{41}}{-6}

Full solution

Q. Solve.\newline3x=9x210 3 x=9 x^{2}-10 \newlineChoose 11 answer:\newline(A) x=7±772 x=\frac{7 \pm \sqrt{77}}{2} \newline(B) x=2±133 x=\frac{-2 \pm \sqrt{13}}{-3} \newline(ᄃ) x=5±30514 x=\frac{-5 \pm \sqrt{305}}{14} \newline(D) x=1±416 x=\frac{-1 \pm \sqrt{41}}{-6}
  1. Move terms to one side: Write the equation in standard form by moving all terms to one side.\newlineWe want to get the equation into the form ax2+bx+c=0ax^2 + bx + c = 0.\newline3x=9x2103x = 9x^2 - 10\newline0=9x23x100 = 9x^2 - 3x - 10\newlineWhat are the values of aa, bb, and cc?\newlinea=9a = 9, b=3b = -3, c=10c = -10
  2. Write equation in standard form: Use the quadratic formula to solve for x x .\newlineThe quadratic formula is x=b±b24ac2a x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}} .\newlineSubstitute a=9 a = 9 , b=3 b = -3 , and c=10 c = -10 into the quadratic formula.\newlinex=(3)±(3)249(10)29 x = \frac{{-(-3) \pm \sqrt{{(-3)^2 - 4 \cdot 9 \cdot (-10)}}}}{{2 \cdot 9}}
  3. Values of aa, bb, and cc: Simplify the equation.x=3±9+36018x = \frac{3 \pm \sqrt{9 + 360}}{18}x=3±36918x = \frac{3 \pm \sqrt{369}}{18}
  4. Use quadratic formula: Calculate the discriminant (the value inside the square root). 369\sqrt{369} is the discriminant.
  5. Substitute values into formula: Find the two possible solutions for xx.x=3+36918x = \frac{3 + \sqrt{369}}{18} or x=336918x = \frac{3 - \sqrt{369}}{18}
  6. Simplify equation: Simplify the square root. 369\sqrt{369} is approximately 19.2119.21. x=3+19.2118x = \frac{3 + 19.21}{18} or x=319.2118x = \frac{3 - 19.21}{18}
  7. Calculate discriminant: Calculate the two solutions.\newlinex(3+19.21)/18x \approx (3 + 19.21) / 18 or x(319.21)/18x \approx (3 - 19.21) / 18\newlinex22.21/18x \approx 22.21 / 18 or x16.21/18x \approx -16.21 / 18\newlinex1.23x \approx 1.23 or x0.90x \approx -0.90
  8. Find possible solutions: Check the solutions against the answer choices.\newlineNone of the answer choices match the solutions we found.

More problems from Solve a quadratic equation using the quadratic formula