Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

3x^(2)+1-7x=13x^(2)
Choose 1 answer:
(A) 
x=(2+-sqrt29)/(5)
(B) 
x=(7+-sqrt89)/(-20)
(C) 
x=(-3+-sqrt105)/(-12)
(D) 
x=(-1+-sqrt73)/(9)

Solve.\newline3x2+17x=13x2 3 x^{2}+1-7 x=13 x^{2} \newlineChoose 11 answer:\newline(A) x=2±295 x=\frac{2 \pm \sqrt{29}}{5} \newline(B) x=7±8920 x=\frac{7 \pm \sqrt{89}}{-20} \newline(C) x=3±10512 x=\frac{-3 \pm \sqrt{105}}{-12} \newline(D) x=1±739 x=\frac{-1 \pm \sqrt{73}}{9}

Full solution

Q. Solve.\newline3x2+17x=13x2 3 x^{2}+1-7 x=13 x^{2} \newlineChoose 11 answer:\newline(A) x=2±295 x=\frac{2 \pm \sqrt{29}}{5} \newline(B) x=7±8920 x=\frac{7 \pm \sqrt{89}}{-20} \newline(C) x=3±10512 x=\frac{-3 \pm \sqrt{105}}{-12} \newline(D) x=1±739 x=\frac{-1 \pm \sqrt{73}}{9}
  1. Combine like terms: Now, combine like terms to simplify the equation.\newline10x27x+1=0-10x^2 - 7x + 1 = 0\newlineThis is now a quadratic equation in standard form.
  2. Use quadratic formula: Next, we will use the quadratic formula to solve for xx, where a=10a = -10, b=7b = -7, and c=1c = 1. The quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
  3. Substitute values: Substitute the values of aa, bb, and cc into the quadratic formula.x=(7)±(7)24(10)(1)2(10)x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(-10)(1)}}{2(-10)}x=7±49+4020x = \frac{7 \pm \sqrt{49 + 40}}{-20}
  4. Simplify square root: Simplify the expression under the square root. x=7±8920x = \frac{7 \pm \sqrt{89}}{-20}
  5. Find possible solutions: Now we have the two possible solutions for xx.x=7+8920x = \frac{7 + \sqrt{89}}{-20} or x=78920x = \frac{7 - \sqrt{89}}{-20}These correspond to answer choice (B).

More problems from Solve a quadratic equation using the quadratic formula