Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

10x^(2)-6=9x
Choose 1 answer:
(A) 
x=(5+-sqrt65)/(-2)
(B) 
x=(9+-sqrt321)/(20)
(c) 
x=(4+-sqrt26)/(10)
(D) 
x=(-1+-sqrt109)/(18)

Solve.\newline10x26=9x10x^{2}-6=9x\newlineChoose 11 answer:\newline(A) \newlinex=5±652x=\frac{5\pm\sqrt{65}}{-2}\newline(B) \newlinex=9±32120x=\frac{9\pm\sqrt{321}}{20}\newline(C) \newlinex=4±2610x=\frac{4\pm\sqrt{26}}{10}\newline(D) \newlinex=1±10918x=\frac{-1\pm\sqrt{109}}{18}

Full solution

Q. Solve.\newline10x26=9x10x^{2}-6=9x\newlineChoose 11 answer:\newline(A) \newlinex=5±652x=\frac{5\pm\sqrt{65}}{-2}\newline(B) \newlinex=9±32120x=\frac{9\pm\sqrt{321}}{20}\newline(C) \newlinex=4±2610x=\frac{4\pm\sqrt{26}}{10}\newline(D) \newlinex=1±10918x=\frac{-1\pm\sqrt{109}}{18}
  1. Write equation in standard form: Write the equation in standard form.\newlineTo solve the quadratic equation using the quadratic formula, we need to write the equation in the standard form ax2+bx+c=0ax^2 + bx + c = 0. We start by moving all terms to one side of the equation.\newline10x29x6=010x^2 - 9x - 6 = 0\newlineHere, a=10a = 10, b=9b = -9, and c=6c = -6.
  2. Apply quadratic formula: Apply the quadratic formula.\newlineThe quadratic formula is x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}. We will substitute the values of aa, bb, and cc into the formula.\newlinex=9±(9)2410(6)210x = \frac{{9 \pm \sqrt{{(-9)^2 - 4 \cdot 10 \cdot (-6)}}}}{{2 \cdot 10}}
  3. Calculate discriminant: Calculate the discriminant.\newlineThe discriminant is the part of the quadratic formula under the square root, b24acb^2 - 4ac.\newlineDiscriminant = (9)2410(6)(-9)^2 - 4 \cdot 10 \cdot (-6)\newlineDiscriminant = 81+24081 + 240\newlineDiscriminant = 321321
  4. Substitute discriminant into formula: Substitute the discriminant back into the formula.\newlineNow that we have the discriminant, we can substitute it back into the quadratic formula.\newlinex=9±321210x = \frac{9 \pm \sqrt{321}}{2 \cdot 10}\newlinex=9±32120x = \frac{9 \pm \sqrt{321}}{20}
  5. Simplify solutions: Simplify the solutions.\newlineWe have two possible solutions for x, corresponding to the '±\pm' in the formula.\newlinex=(9+321)/20x = (9 + \sqrt{321}) / 20 or x=(9321)/20x = (9 - \sqrt{321}) / 20\newlineThese are the solutions in their simplest radical form.

More problems from Solve a quadratic equation using the quadratic formula