Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.

10x^(2)=6+9x
Choose 1 answer:
(A) 
x=(5+-sqrt65)/(-2)
(B) 
x=(9+-sqrt321)/(20)
(c) 
x=(4+-sqrt26)/(10)
(D) 
x=(-1+-sqrt109)/(18)

Solve.\newline10x2=6+9x10x^{2}=6+9x\newlineChoose 11 answer:\newline(A) \newlinex=5±652x=\frac{5\pm\sqrt{65}}{-2}\newline(B) \newlinex=9±32120x=\frac{9\pm\sqrt{321}}{20}\newline(C) \newlinex=4±2610x=\frac{4\pm\sqrt{26}}{10}\newline(D) \newlinex=1±10918x=\frac{-1\pm\sqrt{109}}{18}

Full solution

Q. Solve.\newline10x2=6+9x10x^{2}=6+9x\newlineChoose 11 answer:\newline(A) \newlinex=5±652x=\frac{5\pm\sqrt{65}}{-2}\newline(B) \newlinex=9±32120x=\frac{9\pm\sqrt{321}}{20}\newline(C) \newlinex=4±2610x=\frac{4\pm\sqrt{26}}{10}\newline(D) \newlinex=1±10918x=\frac{-1\pm\sqrt{109}}{18}
  1. Rewrite equation in standard form: First, we need to rewrite the equation in standard quadratic form, ax2+bx+c=0ax^2 + bx + c = 0.\newline10x29x6=010x^2 - 9x - 6 = 0
  2. Identify coefficients: Identify the coefficients aa, bb, and cc to use in the quadratic formula. In this equation, a=10a = 10, b=9b = -9, and c=6c = -6.
  3. Apply quadratic formula: The quadratic formula is x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}. Substitute the values of aa, bb, and cc into the formula.\newlinex=(9)±(9)2410(6)210x = \frac{{-(-9) \pm \sqrt{{(-9)^2 - 4 \cdot 10 \cdot (-6)}}}}{{2 \cdot 10}}
  4. Calculate discriminant: Simplify the equation by calculating the discriminant (the part under the square root).\newlineDiscriminant = (9)2410(6)=81+240=321(-9)^2 - 4 \cdot 10 \cdot (-6) = 81 + 240 = 321
  5. Insert discriminant into formula: Now, insert the discriminant back into the quadratic formula. x=9±32120x = \frac{{9 \pm \sqrt{{321}}}}{20}
  6. Solve for x: The solutions to the equation are therefore:\newlinex = (9+32120)(\frac{9 + \sqrt{321}}{20}) and x = (932120)(\frac{9 - \sqrt{321}}{20})

More problems from Solve a quadratic equation using the quadratic formula