Combine like terms: First, let's combine like terms by moving all terms to one side of the equation to set it equal to zero.10−9x2+4x=−6x2Add 6x2 to both sides to combine the x2 terms.10−9x2+6x2+4x=0Simplify the equation.10−3x2+4x=0
Rearrange in standard form: Now, let's rearrange the terms in standard quadratic form ax2+bx+c=0.−3x2+4x+10=0
Identify coefficients: We need to solve for using the quadratic formula, . First, identify the coefficients a, b, and c.\newlinea = −3-3−3, b = 444, c = 101010
Substitute into quadratic formula: Now, substitute the values of aaa, bbb, and ccc into the quadratic formula.x=−(4)±(4)2−4(−3)(10)2(−3)x = \frac{{-\left(4\right) \pm \sqrt{{\left(4\right)^2 - 4\left(-3\right)\left(10\right)}}}}{{2\left(-3\right)}}x=2(−3)−(4)±(4)2−4(−3)(10)
Calculate discriminant: Calculate the discriminant (the part under the square root).\newlineDiscriminant = (4)2−4(−3)(10)(4)^2 - 4(-3)(10)(4)2−4(−3)(10)\newlineDiscriminant = 16+12016 + 12016+120\newlineDiscriminant = 136136136
Substitute discriminant into formula: Now, substitute the discriminant back into the quadratic formula. \newlinex=−4±136−6x = \frac{{-4 \pm \sqrt{{136}}}}{{-6}}x=−6−4±136
Simplify square root: Simplify the square root of the discriminant. 136=4×34=2×34\sqrt{136} = \sqrt{4 \times 34} = 2 \times \sqrt{34}136=4×34=2×34
Substitute simplified square root: Substitute the simplified square root back into the quadratic formula. x=−4±2⋅34−6x = \frac{{-4 \pm 2 \cdot \sqrt{34}}}{{-6}}x=−6−4±2⋅34
Divide all terms by −2-2−2: Now, simplify the equation by dividing all terms by −2-2−2 to make the denominator positive.\newlinex=2±343x = \frac{2 \pm \sqrt{34}}{3}x=32±34
Final answer: The final answer is in the form of two possible solutions for xxx.x=2+343x = \frac{{2 + \sqrt{{34}}}}{3}x=32+34 or x=2−343x = \frac{{2 - \sqrt{{34}}}}{3}x=32−34
More problems from Solve a quadratic equation using the quadratic formula