Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to create an equivalent expression.

3n+2(-2n-1)
Choose 1 answer:
(A) 
-n+2
(B) 
n+2
(c) 
-n-2
(D) 
n-2

Simplify to create an equivalent expression.\newline3n+2(2n1)3n+2(-2n-1)\newlineChoose 11 answer:\newline(A) n+2-n+2\newline(B) n+2n+2\newline(C) n2-n-2\newline(D) n2n-2

Full solution

Q. Simplify to create an equivalent expression.\newline3n+2(2n1)3n+2(-2n-1)\newlineChoose 11 answer:\newline(A) n+2-n+2\newline(B) n+2n+2\newline(C) n2-n-2\newline(D) n2n-2
  1. Distribute the 22: Distribute the 22 across the terms inside the parentheses.\newlineWe need to multiply each term inside the parentheses by 22.\newlineCalculation: 2×(2n)+2×(1)2 \times (-2n) + 2 \times (-1)\newline= 4n2-4n - 2
  2. Combine with term outside: Combine the result from Step 11 with the term outside the parentheses.\newlineNow we add the distributed terms to the term 3n3n.\newlineCalculation: 3n+(4n)23n + (-4n) - 2\newline= 3n4n23n - 4n - 2
  3. Combine like terms: Combine like terms, which are the terms with nn.\newlineWe add the coefficients of nn together.\newlineCalculation: (34)n2(3 - 4)n - 2\newline=1n2= -1n - 2\newline=n2= -n - 2

More problems from Simplify variable expressions involving like terms and the distributive property