Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify to create an equivalent expression.

-3(2+4k)+7(2k-1)
Choose 1 answer:
(A) 
2k-13
(B) 
8k-13
(c) 
2k+13
(D) 
2k-7

Simplify to create an equivalent expression.\newline3(2+4k)+7(2k1)-3(2+4k)+7(2k-1)\newlineChoose 11 answer:\newline(A) 2k132k-13\newline(B) 8k138k-13\newline(C) 2k+132k+13\newline(D) 2k72k-7

Full solution

Q. Simplify to create an equivalent expression.\newline3(2+4k)+7(2k1)-3(2+4k)+7(2k-1)\newlineChoose 11 answer:\newline(A) 2k132k-13\newline(B) 8k138k-13\newline(C) 2k+132k+13\newline(D) 2k72k-7
  1. Distribute terms in parentheses: Distribute 3-3 to each term inside the first parentheses and 77 to each term inside the second parentheses.\newline3(2+4k)-3(2+4k) becomes 612k-6 - 12k.\newline7(2k1)7(2k-1) becomes 14k714k - 7.
  2. Combine like terms: Combine like terms from the distributed expressions. 612k+14k7-6 - 12k + 14k - 7
  3. Simplify the expression: Combine the constant terms (6(-6 and 7-7) and the kk terms (12k(-12k and 14k14k).\newline67=13-6 - 7 = -13\newline12k+14k=2k-12k + 14k = 2k\newlineSo, the expression simplifies to 2k132k - 13.

More problems from Simplify variable expressions involving like terms and the distributive property