Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply and simplify the following complex numbers:

(-3+3i)*(3-2i)

+=^(-x)

Multiply and simplify the following complex numbers:\newline(3+3i)(32i) (-3+3 i) \cdot(3-2 i) \newline+= +\stackrel{-}{=}

Full solution

Q. Multiply and simplify the following complex numbers:\newline(3+3i)(32i) (-3+3 i) \cdot(3-2 i) \newline+= +\stackrel{-}{=}
  1. Apply distributive property: Apply the distributive property to multiply the two complex numbers.\newline(3+3i)(32i)=(3×3)+(3×2i)+(3i×3)+(3i×2i)(-3+3i)*(3-2i) = (-3 \times 3) + (-3 \times -2i) + (3i \times 3) + (3i \times -2i)
  2. Calculate multiplications: Calculate each multiplication separately.\newline(3×3)=9(-3 \times 3) = -9\newline(3×2i)=6i(-3 \times -2i) = 6i\newline(3i×3)=9i(3i \times 3) = 9i\newline(3i×2i)=6i2(3i \times -2i) = -6i^2
  3. Combine like terms: Combine like terms and remember that i2=1i^2 = -1.\newline9+6i+9i6(1)-9 + 6i + 9i - 6(-1)
  4. Simplify expression: Simplify the expression by adding real parts and imaginary parts separately and substituting i2i^2 with 1-1.\newline9+6i+9i+6-9 + 6i + 9i + 6
  5. Combine real and imaginary parts: Combine the real numbers and the imaginary numbers. (9+6)+(6i+9i)(-9 + 6) + (6i + 9i)
  6. Finish simplification: Finish the simplification.\newline3+15i-3 + 15i

More problems from Simplify linear expressions using properties