Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply and simplify the following complex numbers:

(-2-4i)*(1-i)

+=^(-x)

Multiply and simplify the following complex numbers:\newline(24i)(1i) (-2-4 i) \cdot(1-i) \newline+= +\stackrel{-}{=}

Full solution

Q. Multiply and simplify the following complex numbers:\newline(24i)(1i) (-2-4 i) \cdot(1-i) \newline+= +\stackrel{-}{=}
  1. Apply distributive property: Apply the distributive property to multiply the complex numbers (24i)(-2-4i) and (1i)(1-i).\newline(24i)(1i)=(2)(1)+(2)(i)+(4i)(1)+(4i)(i)(-2-4i)(1-i) = (-2)(1) + (-2)(-i) + (-4i)(1) + (-4i)(-i)
  2. Calculate each multiplication: Calculate each multiplication separately.\newline(2)(1)=2(-2)\cdot(1) = -2\newline(2)(i)=2i(-2)\cdot(-i) = 2i\newline(4i)(1)=4i(-4i)\cdot(1) = -4i\newline(4i)(i)=4i2(-4i)\cdot(-i) = 4i^2
  3. Remember i2i^2 is 1-1: Remember that i2i^2 is equal to 1-1.\newline4i2=4(1)=44i^2 = 4*(-1) = -4
  4. Combine real and imaginary parts: Combine the real parts and the imaginary parts of the product. (2)+(2i)+(4i)+(4)(-2) + (2i) + (-4i) + (-4)
  5. Simplify expression: Simplify the expression by combining like terms.\newlineReal parts: (2)+(4)=6(-2) + (-4) = -6\newlineImaginary parts: (2i)+(4i)=2i(2i) + (-4i) = -2i
  6. Write final simplified form: Write the final simplified form of the product of the two complex numbers. 62i-6 - 2i

More problems from Simplify linear expressions using properties