Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
x+y=-4 and 
x-y=2, what is the value of 
(x+y)(x^(2)-y^(2)) ?

If x+y=4 x+y=-4 and xy=2 x-y=2 , what is the value of (x+y)(x2y2)? (x+y)\left(x^{2}-y^{2}\right) ?

Full solution

Q. If x+y=4 x+y=-4 and xy=2 x-y=2 , what is the value of (x+y)(x2y2)? (x+y)\left(x^{2}-y^{2}\right) ?
  1. Add Equations: Add the two equations together to find the value of xx.(x+y)+(xy)=4+2(x+y) + (x-y) = -4 + 22x=22x = -2x=1x = -1
  2. Substitute xx: Substitute xx back into one of the original equations to find yy.\newline1+y=4-1 + y = -4\newliney=3y = -3
  3. Substitute values: Now substitute the values of xx and yy into the expression (x+y)(x2y2)(x+y)(x^{2}-y^{2}).\(\newline\)(13)((1)2(3)2)(-1-3)((-1)^{2}-(-3)^{2})
  4. Simplify expression: Simplify the expression. (4)(19)(-4)(1-9)
  5. Continue simplifying: Continue simplifying.\newline(4)(8)(-4)(-8)
  6. Calculate result: Calculate the final result. 3232

More problems from Unions and intersections of sets