Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(x)=3x-1 and 
g(x)=x^(2)+1, what is the value of 
g(f(3)) ?
Choose 1 answer:
(A) 8
(B) 10
(c) 29
(D) 65

If f(x)=3x1 f(x)=3 x-1 and g(x)=x2+1 g(x)=x^{2}+1 , what is the value of g(f(3)) g(f(3)) ?\newlineChoose 11 answer:\newline(A) 88\newline(B) 1010\newline(C) 2929\newline(D) 6565

Full solution

Q. If f(x)=3x1 f(x)=3 x-1 and g(x)=x2+1 g(x)=x^{2}+1 , what is the value of g(f(3)) g(f(3)) ?\newlineChoose 11 answer:\newline(A) 88\newline(B) 1010\newline(C) 2929\newline(D) 6565
  1. Find f(3)f(3): Given the functions f(x)=3x1f(x) = 3x - 1 and g(x)=x2+1g(x) = x^2 + 1, we first need to find the value of f(3)f(3).
    f(x)=3x1f(x) = 3x - 1
    f(3)=3(3)1f(3) = 3(3) - 1
    f(3)=91f(3) = 9 - 1
    f(3)=8f(3) = 8
  2. Substitute f(3)f(3) into g(x)g(x): Now that we have f(3)=8f(3) = 8, we need to find the value of g(f(3))g(f(3)), which means we need to substitute xx in g(x)g(x) with the value of f(3)f(3).
    g(x)=x2+1g(x) = x^2 + 1
    g(f(3))=g(8)=82+1g(f(3)) = g(8) = 8^2 + 1
    g(f(3))=64+1g(f(3)) = 64 + 1
    g(f(3))=65g(f(3)) = 65

More problems from Unions and intersections of sets