Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
(3)/(4)x+2 <= 11, what is the greatest possible value of 
(3)/(4)x-9 ?
Choose 1 answer:
(A) 
-(9)/(4)
(B) 0
(c) 9
(D) 12

If 34x+211 \frac{3}{4} x+2 \leq 11 , what is the greatest possible value of 34x9 \frac{3}{4} x-9 ?\newlineChoose 11 answer:\newline(A) 94 -\frac{9}{4} \newline(B) 00\newline(C) 99\newline(D) 1212

Full solution

Q. If 34x+211 \frac{3}{4} x+2 \leq 11 , what is the greatest possible value of 34x9 \frac{3}{4} x-9 ?\newlineChoose 11 answer:\newline(A) 94 -\frac{9}{4} \newline(B) 00\newline(C) 99\newline(D) 1212
  1. Solve Inequality: First, let's solve the inequality (34)x+211(\frac{3}{4})x + 2 \leq 11 to find the maximum value of xx. \newlineSubtract 22 from both sides of the inequality to isolate the term with xx. \newline(34)x+22112(\frac{3}{4})x + 2 - 2 \leq 11 - 2 \newline(34)x9(\frac{3}{4})x \leq 9
  2. Divide by Reciprocal: Now, divide both sides of the inequality by (34)(\frac{3}{4}) to solve for xx. \newlineTo do this, multiply both sides by the reciprocal of (34)(\frac{3}{4}), which is (43)(\frac{4}{3}). (43)×(34)x(43)×9(\frac{4}{3}) \times (\frac{3}{4})x \leq (\frac{4}{3}) \times 9 \newlinex12x \leq 12
  3. Substitute x=12x = 12: We have found that xx is less than or equal to 1212. Now we need to find the greatest possible value of 34x9\frac{3}{4}x - 9. \newlineSubstitute x=12x = 12 into the expression 34x9\frac{3}{4}x - 9 to find the maximum value. \newline34(12)9\frac{3}{4}(12) - 9
  4. Simplify Further: Calculate the value of (34)(12)9(\frac{3}{4})(12) - 9. \newline=3×39= 3 \times 3 - 9 \newline=99=9 - 9 \newline=0= 0
  5. Find Maximum Value: The greatest possible value of (34)x9(\frac{3}{4})x - 9, when xx is less than or equal to 1212, is 00. \newlineTherefore, the correct answer is (B) 00.

More problems from Domain and range